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Open-Domain Semi-Supervised Learning via
Glocal Cluster Structure Exploitation

Zekun Li, Lei Qi, Yawen Li, Yinghuan Shi∗, Yang Gao

Abstract—Semi-supervised learning (SSL) aims to reduce the heavy reliance of current deep models on costly manual annotation
by leveraging a large amount of unlabeled data in combination with a much smaller set of labeled data. However, most existing SSL
methods assume that all labeled and unlabeled data are drawn from the same feature distribution, which can be impractical in real-world
applications. In this study, we take the initial step to systematically investigate the open-domain semi-supervised learning setting, where
a feature distribution mismatch exists between labeled and unlabeled data. In pursuit of an effective solution for open-domain SSL, we
propose a novel framework called GlocalMatch, which aims to exploit both global and local (i.e., glocal) cluster structure of open-domain
unlabeled data. The glocal cluster structure is utilized in two complementary ways. Firstly, GlocalMatch optimizes a Glocal Cluster
Compacting (GCC) objective, that encourages feature representations of the same class, whether with in the same domain or across
different domains, to become closer to each other. Secondly, GlocalMatch incorporates a Glocal Semantic Aggregation (GSA) strategy
to produce more reliable pseudo-labels by aggregating predictions from neighboring clusters. Extensive experiments demonstrate that
GlocalMatch outperforms the state-of-the-art SSL methods significantly, achieving superior performance for both in-domain and out-of-
domain generalization. The code is released in https://github.com/nukezil/GlocalMatch.

Index Terms—Semi-supervised learning, distribution mismatch, cluster structure, pseudo-labeling.
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1 INTRODUCTION

Semi-Supervised Learning (SSL) [1] is one of the funda-
mental paradigms in machine learning, aimed at enhancing
model performance by incorporating unlabeled data, which
are often much easier to obtain with little human labor.
Given only a small fraction of labeled data, advanced deep
SSL methods have exhibited outstanding results in vari-
ous vision tasks, including image classification [2], object
detection [3], and semantic segmentation [4]. SSL has also
achieved success in other tasks involving diverse data types
beyond images [5]–[9]. Despite the successful applications of
SSL, it is important to note that most of these methods rely
on the essential prerequisite that all labeled and unlabeled
samples are drawn from the same distribution. However,
in real-world tasks, it is often challenging, even impossible,
to obtain a perfectly matched unlabeled dataset due to the
sheer volume of data. Researchers have observed that SSL
methods may exhibit poor performance when faced with
unlabeled data containing classes unknown in the labeled
data [10]. This situation, where there is a mismatch in class
distribution between labeled and unlabeled data, is also
referred to as Open-Set Semi-Supervised Learning [11]. To
address this challenge, various methods have been pro-
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Fig. 1. Illustration of various SSL settings. (1) For standard SSL, labeled
and unlabeled data are sampled from the same distribution. (2) For
open-set SSL under class distribution mismatch, unlabeled data may
contain classes unknown in labeled data (denoted by the red boxes). (3)
For open-domain SSL under feature distribution mismatch, unlabeled
data may contain samples from different domains than labeled data, i.e.,
out-of-domain samples (denoted by the blue boxes).

posed to alleviate the negative effects caused by unlabeled
samples from unknown classes [11]–[18].

Distinguished from the prior studies, we focus on ad-
dressing another realistic issue of SSL with a mismatch in
feature distribution between labeled and unlabeled data.
This issue is also critical to ensure the effectiveness of
SSL in real-world applications, but has received limited
investigation in existing research. The feature distribution
mismatch problem is prevalent in practical scenarios due to
the diverse domains of massive unlabeled data, which can
be collected at different times, from various locations, and
through different means. For example, the unlabeled data
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might be a mixture of low-resolution and high-resolution
images, real images and synthetic images, or images with
different artistic styles. Moreover, the task becomes even
more demanding when all the labeled samples come exclu-
sively from one of the domains and the domain labels of the
unlabeled samples are unavailable. Inspired by the name
convention of open-set SSL, we term such a challenging and
realistic setting as Open-Domain Semi-Supervised Learning. As
depicted in Fig. 1, the distinction in various SSL settings lies
in the nature of the distribution mismatch between labeled
and unlabeled data.

To demonstrate how out-of-domain samples within un-
labeled data will affect the performance of SSL, we provide a
case study using two popular datasets, CIFAR [19] and STL
[20], which consist of low-resolution and high-resolution
natural images, respectively. We compare the results ob-
tained in the standard SSL setting, where both labeled and
unlabeled samples are from the CIFAR dataset, with the
results in the open-domain SSL setting, where the unlabeled
data includes additional samples from the STL dataset,
as shown in Fig. 2. For the classic standard SSL method,
FixMatch [2], learning with additional out-of-domain unla-
beled samples leads to much lower in-domain performance.
More surprisingly, the model has almost lost all its out-of-
domain generalization capability. Similar phenomena can
be observed even in the latest state-of-the-art methods like
SoftMatch [21]. The significant performance degradation
arises from the pseudo-labeling mechanism, which is widely
adopted in the mainstream SSL methods. During the early
stage of training, the model will be inevitably biased to-
wards the labeled domain, resulting in unreliable pseudo-
labels for the out-of-domain unlabeled samples. Due to the
lack of labeled samples from the corresponding domains to
provide reliable supervision, these erroneous pseudo-labels
become difficult to correct. As a consequence, the model
will suffer from severe confirmation bias and can hardly
generalize to out-of-domain testing data.

In light of the aforementioned challenge, we endeavor
to enhance the traditional pseudo-labeling mechanism by
leveraging the cluster structure of unlabeled data, instead
of just learning from the instance-level semantic informa-
tion. Given that the unlabeled samples are collected from
different domains, the cluster structure should be examined
from both local and global perspectives: From the local
perspective, within each domain, the samples will form
small clusters with high semantic consistency; From the
global perspective, across different domains, clusters with
similar semantics should be relatively close to each other.
The glocal cluster structure will be harnessed to facilitate the
learning of representation and classification simultaneously.

In this work, we propose a novel open-domain SSL
framework named GlocalMatch. It exploits the glocal clus-
ter structure through two complementary components: the
Glocal Cluster Compacting (GCC) objective and the Glocal
Semantic Aggregation (GSA) strategy. To optimize the GCC
objective, we periodically perform K-Means clustering on all
unlabeled data. At a local level, samples within each cluster
are optimized to be closer to their respective centroids, while
at a global scale, clusters exhibiting similar semantics are ad-
justed to be closer to one another. Simultaneously, the glocal
cluster structure is employed for enhancing pseudo-labeling

Fig. 2. We present the performance of models trained with different
methods under different settings. For standard SSL, the labeled and
unlabeled data are all from CIFAR. Only 1% of the samples are labeled.
For open-domain SSL, the unlabeled data contain additional samples
from STL. We report the classification accuracy on the testing sets of
CIFAR and STL, respectively.

through the GSA strategy. Concretely, we assign a one-hot
class label to each cluster by establishing complete bipartite
connections between cluster centroids and class prototypes.
This assignment can be formulated as a minimum-cost flow
problem. Consequently, the pseudo-label of each sample
is refined by aggregating semantic information not only
from its own cluster but also from neighboring clusters.
Using the glocal cluster structure as a bridge, these two
components can mutually reinforce each other during the
training process.

Extensive experiments have been conducted across var-
ious open-domain SSL scenarios with multiple datasets,
where the proposed method, GlocalMatch, is compared
with the latest state-of-the-art SSL methods. Fig. 2 offers
a quick glance at the results, which demonstrate that Glo-
calMatch effectively mitigates the adverse impacts of out-
of-domain samples and can even leverage them to achieve
performance improvements. The achievement stems from
two aspects: Firstly, the refinement process results in high-
confidence pseudo-labels, which greatly enhances their reli-
ability. Secondly, even samples with low confidence can also
contribute to the exploitation of the glocal cluster structure.
In summary, GlocalMatch can more accurately and effec-
tively leverage open-domain unlabeled data.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to system-

atically investigate the realistic yet challenging setting
of open-domain SSL, where a feature distribution mis-
match exists between labeled and unlabeled data.

• We propose a novel open-domain SSL framework, Glo-
calMatch, which aims to exploit the cluster structure of
unlabeled data from both local and global perspectives.
The glocal cluster information is utilized for boost the
representation and classification simultaneously.

• We introduce two complementary components: the glo-
cal cluster compacting objective for representation and
the glocal semantic aggregation strategy for classifica-
tion. Taking the glocal cluster structure as a bridge, they
can enhance each other during training.

The rest of this paper is organized as follows. We discuss
previous research relevant to the open-domain SSL problem
in Section 2. In Section 3, we begin by introducing the pre-
liminaries and the overall framework of GlocalMatch, and
then explore the specific technical aspects. Our experimental
results, along with the related analysis and discussions, are
covered in Section 4, and we conclude in Section 5.
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2 RELATED WORK

2.1 Realistic Semi-Supervised Learning

In the era of deep learning, semi-supervised learning has
garnered significant attention due to the imperative for
extensive training data. In the context of deep SSL, consis-
tency regularization [22] and pseudo-labeling [23] are two
mainstream techniques that have been widely employed in
prior studies [24]–[27]. Among more recent works, FixMatch
[2] stands out as one of the most influential SSL meth-
ods, known for its simplicity and effectiveness. It enhances
consistency regularization through a stronger form of data
augmentation and incorporates confidence-based pseudo-
labeling. FlexMatch [28] and FreeMatch [29] adjust the class-
specific confidence thresholds based on varying learning
difficulties. SoftMatch [21] proposes weighting unlabeled
samples based on their confidence to address the quantity-
quality trade-off problem of pseudo-labeling. Drawing in-
spiration from the advancements in contrastive learning
[30]–[32], some methods leverage instance-level feature sim-
ilarity in auxiliary learning objectives [33]–[36]. There are
also graph-based methods achieving high performance on
structured data [37]–[39]. For more comprehensive reviews
on SSL theories and methods, we refer readers to [40]–[42].

While numerous positive results have been achieved,
most existing SSL methods rely on the condition that labeled
and unlabeled data share the exact same distribution. In re-
alistic scenarios, however, a distribution mismatch between
labeled and unlabeled data is common, which can lead
to serious performance degradation in SSL methods [10].
The class distribution mismatch arises from discrepancies
in label spaces, where the unlabeled data may contain new
classes unknown in the labeled data. This setting, known as
open-set SSL, has attracted growing attention. Researchers
have put forth various strategies to alleviate the negative
effects of such outliers from unknown classes. Certain open-
set SSL methods employ an intuitive detect-and-exclude
strategy, aiming to identify outliers and subsequently re-
move them from consideration [11], [12], [15]. On the other
hand, alternative approaches recognize the potential value
of outliers and utilize them in diverse ways [14], [16]–[18].

The feature distribution mismatch occurs when the un-
labeled data may contain out-of-domain samples, which we
refer to as open-domain SSL. This problem is also crucial
for ensuring the performance of SSL methods in real-world
tasks, but has not yet been thoroughly studied. Existing
works, Huang et al. [43] and Jia et al. [44], explore a
simplified scenario in which all unlabeled data are drawn
from a single different domain. Proposed for such a setting,
CAFA [43] and BDA [44] aim to align the distribution of
unlabeled data to that of labeled data. Specifically, CAFA
[43] achieves feature alignment through adversarial training
and BDA [44] designs a weighted pseudo-labeling mech-
anism for distribution adaptation. While CAFA [43] and
BDA [44] perform well when dealing with a single different
domain in unlabeled data, their applicability diminishes in
the more realistic open-domain SSL setting, as the absence
of ground-truth domain labels and the amalgamation of
multiple unknown domains will significantly compromise
the effectiveness of distribution adaptation.

TABLE 1
Comparison of Open-Domain SSL and Existing Related Settings

Setting Limited
Labels

Domain
Shift

Unknown
Domain

Information

Standard SSL [2] ✓ ✗ ✗
UDA [57] ✗ ✓ ✗

Huang’s [43] and Jia’s [44] ✓ ✓ ✗

Open-Domain SSL (Ours) ✓ ✓ ✓

2.2 Learning with Data from Different Domains

In open-domain SSL, models are expected to exploit un-
labeled data from different domains. A learning problem
related to it is Unsupervised Domain Adaptation (UDA)
[45], where models are trained with a set of labeled “source”
samples and a set of unlabeled “target” samples to enable
generalization in the ”target” domain. Motivated by semi-
nal UDA theories [46]–[48], existing studies pursue diverse
methods to reduce the domain discrepancy. A mainstream
branch of works [49]–[51] proposes explicitly minimizing
various discrepancy metrics, such as maximum mean dis-
crepancy (MMD) [52] and its variants. Another branch of
works [53]–[55] leverages the adversarial training paradigm
to learn domain-invariant feature representations. Addition-
ally, some researchers have observed that SSL and UDA
share a common learning paradigm with different configu-
rations of labeled and unlabeled data [56]. Taking this aspect
into consideration, a unified approach called AdaMatch [56]
has been proposed, aiming to encompass both standard SSL
and UDA tasks.

Although UDA and open-domain SSL both involve
learning from unlabeled samples and dealing with domain
shifts, there are fundamental differences between the two
settings. Firstly, in UDA, we have access to the domain
information, which means that we know all the labeled
samples are drawn from the source domain and all the
unlabeled samples are from the target domain. However,
in open-domain SSL, the domain information is absent as
we cannot identify the domain label of each unlabeled
sample during training. Secondly, UDA typically assumes
the availability of plentiful labeled source data, whereas in
open-domain SSL, the number of labeled samples is quite
limited. Therefore, despite achieving high performance on
standard UDA tasks, the strong UDA methods cannot be
directly applied to the open-domain SSL setting due to the
challenges posed by the scarcity of labeled data and the
absence of domain information.

In Table 1, we summarize the distinctions between our
proposed open-domain SSL setting and existing ones across
three dimensions: (1) “Limited Labels”: Whether only a
limited number of labeled samples are available during
training; (2) “Domain Shift”: Whether there is a feature
distribution mismatch (or domain shift) between labeled
and unlabeled data; (3) “Unknown Domain Information”:
Whether it is unknown from which domain each unlabeled
sample comes. Each of these dimensions loosens the con-
straints on training data, making our setting more realistic
but also more challenging.
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3 METHODOLOGY

The main idea of GlocalMatch is to exploit the glocal cluster
structure of open-domain unlabeled data from both local
and global perspectives. In this section, we will delve into
the depth of the proposed framework.

In Section 3.1, we begin by providing a formal definition
of open-domain semi-supervised learning and presenting an
overview of GlocalMatch. Then, in Section 3.2, we elaborate
on the assumption of glocal cluster structure, which is the
core motivation of GlocalMatch. Moving on to Section 3.3,
we introduce the glocal cluster compacting objective for
optimizing the feature representations. Next, in Section 3.4,
we provide details on how the glocal cluster structure aids
in refining pseudo-labels through glocal semantic aggrega-
tion. Finally, in Section 3.5, we discuss the overall training
procedure of GlocalMatch.

3.1 Preliminaries and Overview

We define an open-domain semi-supervised learning task,
where the training set consists of N l labeled samples and
Nu unlabeled samples. As in standard SSL, we assume that
N l ≪ Nu. For training, we use mini-batches comprising
labeled and unlabeled data. Let X = {(xi, yi) : i ∈
(1, . . . , Bl)} represent a batch of Bl labeled samples, where
xi is a training sample and yi is the corresponding label.
Additionally, let U = {ui : i ∈ (1, . . . , Bu)} represent
a batch of Bu unlabeled samples. The labeled samples X
and a portion of the unlabeled samples U in are drawn
from the same domain, and we refer to U in as in-domain
samples. Conversely, the remaining portion of the unlabeled
samples Uout are drawn from different domain(s) and are
referred to as out-of-domain samples. Technically, we have
U in ∪ Uout = U and U in ∩ Uout = ∅. Moreover, the
domain information is unavailable during training, which
means that we do not know whether an unlabeled sample
ui belongs to U in or Uout. It is assumed that all involved
domains share the same label space, and the total number
of classes is L.

Given a labeled batch X , we apply a random weak
transformation function Tw(·) to obtain the weakly aug-
mented samples. A base encoder network F(·) is employed
to extract the feature representations from these samples,
i.e., hl

i = F(Tw(xi)) ∈ RD. A fully-connected classifier
ϕ(·) maps the feature hl

i into the semantic label prediction,
i.e., pl

i = ϕ(hl
i). The labeled batch are used to optimize the

networks with the standard cross-entropy loss H(·):

Ls(X ) =
1

Bl

Bl∑
i=1

H(yi,p
l
i). (1)

Additionally, we adopt a non-linear projection head G(·) to
obtain the normalized low-dimensional embedding zl

i =
G(hl

i)/∥G(hl
i)∥ ∈ Rd. For an unlabeled batch U , we apply

both the weak and strong augmentation with Tw(·) and
Ts(·). The same operations as above are performed to obtain
hw
i and zw

i for the weakly augmented samples Tw(ui); hs
i

and zs
i for the strongly augmented samples Ts(ui). For the

weakly augmented images, the semantic label predictions
are obtained by pw

i = DA(ϕ(hw
i )), where DA(·) stands for

the distribution alignment strategy as in [58] to balance the

Glocal Cluster Compacting
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Centroid #4

𝑞𝑤 = [0.6,0.2,0.1,0.1]

ҧ𝑝 = [0.8,0.2]

Glocal Semantic Aggregation

Class Prototypes:

Open-Domain Samples:

Fig. 3. We offer an intuitive illustration of the core ideas within in our pro-
posed GlocalMatch framework. Through the Glocal Cluster Compacting
(GCC) objective, we enhance the compactness of feature representa-
tions associated with each class. For the Glocal Semantic Aggregation
(GSA) strategy, we take into account the semantics of centroids and
the similarity between samples and centroids (represented by qw) to
produce glocal structural pseudo-labels (denoted as p̂).

distribution of the model’s predictions and thus prevent
them from collapsing to certain classes. For the strongly
augmented images, ps

i = ϕ(hs
i ).

GlocalMatch exploits the glocal cluster structure of open-
domain unlabeled data with two components. We illustrate
the core ideas in Fig. 3. Firstly, it optimizes the glocal cluster
compacting (GCC) objective, encouraging samples of the
same class to become closer in the feature space, even if they
are from different domains. Secondly, the novel glocal se-
mantic aggregation (GSA) strategy is introduced to produce
more reliable pseudo-labels, alleviating confirmation bias.
The two components, for representation and classification,
are simultaneously optimized in GlocalMatch. They can
progressively enhance each other, facilitated by the glocal
cluster structure acting as a bridge.

3.2 Assumption on Glocal Cluster Structure
Before delving into the technical details, we first elaborate
on the glocal cluster assumption, which serves as the core
motivation behind GlocalMatch.

The cluster assumption in SSL states that data points
belonging to the same cluster should be of the same class [1].
As highlighted in [40], this assumption can be considered
as a necessary condition for SSL: if the data points (both
labeled and unlabeled) cannot be meaningfully clustered, it
is impossible for an SSL method to improve on a supervised
learning method. For the standard SSL setting, where all
labeled and unlabeled samples are drawn from the same
domain, the cluster assumption has been implicitly or ex-
plicitly relied upon in deep SSL methods [59]–[61]. For a
model trained on a single domain while dealing with data
from multiple unknown domains, it has been observed that
samples of different domains are tend to form domain-
specific intrinsic structures [62]–[64]. Within each intrinsic
structure, the cluster assumption still holds [64]. This obser-
vation inspires us to examine the overall cluster structure of
open-domain samples from the local perspective.

However, the local cluster structure alone is insufficient
to train an SSL model that generalizes well across different
domains. From the global perspective, it is expected that
clusters of the same class from different domains should be
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aligned close to each other. This global cluster structure is
not evident and is easily disrupted when the model is not
well-trained. The case study in Fig. 2 demonstrates that the
unreliable pseudo-labeling mechanism can severely disrupt
the cluster structure of unknown domains, resulting in a
significant loss of out-of-domain generalizability.

In GlocalMatch, we design GCC and GSA to effectively
utilize the glocal cluster structure while preventing its dis-
ruption. Specially, the optimization of GCC objective aligns
both samples with each local clusters and clusters exhibiting
similar semantics to be closer to each other. The GSA strat-
egy prevents unreliable pseudo-labels from disrupting the
glocal cluster structure. At the same time, as the model’s
generalization capability improves on open-domain data,
the glocal cluster structure becomes increasingly prominent.

3.3 Glocal Cluster Compacting for Representation
Broadly, the glocal cluster compacting (GCC) objective is
aimed to enhance the intra-class compactness of feature
representations, thereby rendering the feature space more
discriminative. Considering that the unlabeled data can
encompass samples from multiple distinct domains, the
optimization of the GCC objective takes into account both
local and global perspectives.

3.3.1 Compacting from Local Perspective
During training, we periodically perform K-Means clus-
tering on all the unlabeled samples with the projected
embeddings {zw

i }
Nu
i=1 of their weakly augmented views.

The samples are clustered into K clusters represented by
their centroids C = [c1; · · · ; cK ] ∈ RK×d. The clustering
assignment matrix is formulated as A ∈ {0, 1}Nu×K :

Ai,j =

{
1 if ui is assigned to cj ;

0 otherwise.
(2)

It is obvious that
∑

j Ai,j = 1 for each i. Besides, we denote
the submatrix with respect to the unlabeled samples within
a mini-batch as A′ ∈ {0, 1}Bu×K . Using the cosine similar-
ity function, which is defined as sim(a, b) = a⊤b/∥a∥∥b∥,
the probability distribution that the i-th weakly and strongly
augmented sample is assigned to each cluster can be esti-
mated as qw

i and qs
i , in which

q
w/s
i,j =

exp
(

sim(z
w/s
i , cj)/T

)
∑K

j′=1 exp
(

sim(z
w/s
i , cj′)/T

) , (3)

where T is the temperature parameter controlling the con-
centration degree.

By combining the prototypical contrastive loss [65] with
the weak-to-strong consistency technique, the GCC loss for
a mini-batch of unlabeled data can be expressed as

Lc(U) =
1

Bu

Bu∑
i=1

H(Ŵi, q
s
i ), (4)

where Ŵ ∈ RBu×K is the target assignment matrix. Specifi-
cally, Ŵ should encode the glocal cluster structure informa-
tion, which represents the optimal similarity of each sample
to all the centroids. Therefore, Ŵ should adhere to the
constraints that Ŵi,j ≥ 0 and

∑
j Ŵi,j = 1 for any i.

As with the previous works [63], [65], [66] that also
exploit the cluster structure for representation learning, we
can directly employ the K-Means clustering assignment A′

as the target Ŵ . In this way, the loss primarily optimizes
the compactness from a local perspective, encouraging the
samples to be closer to their respective centroids. Consider-
ing such local cluster structure is essential because samples
within the same cluster often belong to the same class.
However, relying solely on the local structure is insufficient,
as clusters of the same class might be dispersed widely
when they are from different domains. Below, we present
how we also encode the global cluster structure into the
target.

3.3.2 Integrating with Global Perspective
Regarding the global cluster structure, clusters with similar
semantics should be drawn closer to other. Given that we
can only process a mini-batch of unlabeled samples per
iteration, we accomplish this indirectly by bringing samples
with similar semantics together. Technically, we maintain a
set of class prototypes P = [µ1; · · · ;µL] ∈ RL×d, which is
calculated with the projected embeddings of all the labeled
samples:

µc =
1

|Il
c|

∑
i∈Il

c

zl
i, (5)

where Il
c denotes the indices of labeled samples belonging

to the c-th class. Then, the similarity distribution between
the j-th centroid to the class prototypes, denoted as p̃j , is
computed by

p̃j,c =
exp (sim(cj ,µc)/T )∑L

c′=1 exp (sim(cj ,µc′)/T )
. (6)

For the i-th unlabeled sample, the semantic prediction pw
i

is produced by the classifier on its weakly augmented view.
We adhere to a simple principle: if a sample is predicted
to belong to a certain class, it should be drawn closer to the
centroids that are near the prototype of that class. Therefore,
we obtain the global target matrix, denoted as Wglobal ∈
RBu×K , in which

Wglobal
i,j = Normalize(pw

i · p̃j), (7)

where
Normalize(W)i =

Wi∑
j Wi,j

. (8)

By adopting Wglobal as the target, samples exhibiting similar
semantics will be attracted toward similar centroids, bring-
ing them closer to each other. As clusters are formed by
samples, it follows that clusters sharing similar semantics
will naturally be drawn closer to one another.

Integrating the local target W local = A′ ∈ {0, 1}Bu×K

with the global target Wglobal, we finally reach the glocal
target assignment matrix:

Ŵ = Normalize(W local +Wglobal). (9)

The GCC loss (Eq. (4)) employs the glocal target Ŵ to ex-
ploits the glocal cluster structure for representation learning.

It is noteworthy that we perform K-Means clustering and
define the loss on the projected embeddings zi’s instead
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of directly on the feature representations hi’s. Such design
is informed by prior research on self-supervised represen-
tation learning [67]. This study empirically demonstrates
that a non-linear projection head substantially improves the
quality of feature representations generated by the layer pre-
ceding it, which implicitly aids classification with the more
discriminative feature space. In the following paragraphs,
we explore how to explicitly enhance pseudo-labeling by
utilizing the glocal cluster structure.

3.4 Glocal Semantic Aggregation for Classification

The primary challenge in open-domain SSL emerges from
incorrect pseudo-labels assigned to out-of-domain unla-
beled samples, particularly in the initial training stages. Due
to the absence of labeled samples from the corresponding
domains to offer dependable supervision, rectifying these
errors for the classifier itself can be quite challenging. In
response to this challenge, we design a glocal semantic
aggregation (GSA) strategy, which generates an alternative
set of pseudo-labels based on the glocal cluster structure, for
complementing those predicted by the classifier.

3.4.1 Formulation of Centroid Matching

We start by associating semantics with the unsupervised
clusters. Specifically, given that a majority of samples within
each cluster belong to the same class, the first step is to
determine the corresponding class labels for the clusters. In
the projection space, the clusters are represented by their
centroids C, and the semantic information is encoded with
in the class prototypes P . The problem equals matching each
centroid to a certain prototype. Formally, our objective is to
obtain a matching matrix Q ∈ {0, 1}K×L, where

Qj,c =

{
1 if cj matches µc;

0 otherwise,
(10)

with the constraint

k∑
c′=1

Qj,c′ = 1,∀j ∈ {1, · · · ,K}. (11)

Each matrix Q satisfying the above constraint corresponds
to a label prediction for the clusters. Additionally, we reg-
ulate the minimum number of clusters allocated to each
class to prevent the issue of collapsing, wherein most of the
clusters are assigned to few dominant classes. The optimal
matching matrix Q∗ minimizes the total sum of pairwise
distances between the matched clusters and classes:

Q∗ = argmin
Q

K∑
j=1

L∑
c=1

Qj,c ∥cj − µc∥

s. t.
L∑

c′=1

Qj,c′ = 1,
K∑

j′=1

Qj′,c ≥ ⌊ηK
L
⌋,

(12)

where η ∈ [0, 1] is the hyperparameter controlling the lower-
bound size of cluster sets belonging to each class.

𝒄1

𝒄2

𝝁1

𝝁2
𝒄3 𝒕

𝒄𝑵
𝝁𝐿

Fig. 4. The flow network graph G constructed by the centroids {cj} and
the class prototypes {µc}. f(cj ,µc) > 0 (denoted by a green arc in the
figure) indicates that the j-th cluster is assigned to the c-th class.

3.4.2 Solving as Minimum Cost Flow Problem
As mentioned in [68], the form of the constraints in the
centroid matching problem (i.e., Eq. (12)) renders it equiv-
alent to a Minimum Cost Flow (MCF) problem [69]. A
general MCF problem is defined upon a flow network graph
G = (V,E). Each node u ∈ V is associated with a value
b(v) indicating whether it is a supply node (b(v) > 0) or a
demand node (b(v) < 0). A feasible MCF problem requires
that

∑
v∈V b(v) = 0. For each directed edge e = (v, w) ∈ E,

f(v, w) indicates the amount of flow on the edge; c(v, w)
indicates the cost for shipping one unit flow on the edge;
and u(v, w) indicates the capacity of the edge. The MCF
problem is to find the optimal flow f∗ which satisfies all the
supplies and demands, and has the minimum total cost:

f∗ = argmin
f

∑
(v,w)∈E

c(v, w) · f(v, w)

s. t.

0 ≤ f(v, w) ≤ u(v, w),∀(v, w) ∈ E∑
w∈V

f(v, w)−
∑
w∈V

f(w, v) = b(v),∀v ∈ V.

(13)

In our centroid matching problem, each centroid cj
corresponds to a supply node with b(cj) = 1, and each
class prototype µc corresponds to a demand node with
b(µc) = −⌊ηK/L⌋. Then G is a complete bipartite graph, in
which there is an edge for each (cj ,µc) pair. We define the
cost on edge (cj ,µc) as c(cj ,µc) = ∥cj − µc∥. To satisfy the
constrains involving the supplies and demands, we add an
virtual demand node t with the demand b(t) = ⌊ηK⌋ −K .
There are additional edges from each class prototype µc to
t with zero cost and no connections between the centroids
cj with t. We illustrate the flow network graph in Fig. 4.
Since b(v),∀v ∈ V is always integer-valued, the optimal
flow f∗ is also integer-valued, i.e., f∗(cj ,µc) ∈ {0, 1} for
each j and c, which is proved in [68]. Therefore, the optimal
matching Q∗ corresponds to the optimal flow f∗, that is
Q∗

j,c = f∗(cj ,µc). When it comes to implementation, the
MCF problem can be efficiently solved with the network
simplex algorithm [70].

3.4.3 Aggregation for Structural Pseudo-labels
With the optimal matching matrix Q∗, we have assigned
each cluster to a certain class. In a straightforward manner,
we can employ the one-hot vector Q∗

j as the structural
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pseudo-label for each unlabeled sample in the j-th cluster.
However, such approach might be suboptimal for samples
located at the boundaries of clusters. Considering this, we
aggregate the semantic information from all the clusters to
generate the structural pseudo-label p̄i for each unlabeled
sample ui:

p̄i =
1

L

L∑
j=1

qw
i,j · Q∗

i , (14)

where qw
i,j is the normalized similarity between the sample

ui and the centroid cj , which has been defined in Eq. (3).
We use p̄i to refine the original pseudo-label predicted

by the classifier:

p̂i = αpw
i + (1− α)p̄i, (15)

where α ∈ [0, 1] is the hyperparameter controlling the
degree of refinement. Integrating the glocal cluster struc-
ture, p̂i’s are more reliable pseudo-labels for open-domain
unlabeled samples:

Lu(U) =
1

Bu

Bu∑
i=1

1(max
c

(p̂i,c) > τ) · H(p̂i,p
s
i ), (16)

where τ is the threshold of confidence to filter out unreliable
pseudo-labels.

In the GSA strategy, accurately assigning the unsu-
pervised clusters to semantic classes is of paramount im-
portance. To accomplish this, we formulate the task as a
constrained centroid matching problem that is equivalent
to the MCF problem. Another straightforward approach
involves directly utilizing the centroid-prototype similarity
distribution p̃j,c (from Eq. (6)) to determine the class labels
of clusters. However, this simplistic approach without con-
straints fails to address the issue of collapsing, leading to in-
correct structural pseudo-labels. Furthermore, this approach
would exacerbate confirmation bias since we employ p̃j,c to
construct the global target for representation learning.

At last, it is worth noting that the GCC objective and
the GSA strategy serve as two complementary components
within the GlocalMatch framework, working in tandem to
progressively boost one another. On one hand, the GSA
strategy is utilized to produce more reliable pseudo-labels
for training the classifier, thus providing essential semantic
information to optimize the GCC objective. On the other
hand, as the glocal cluster compacting is enhanced, the
accuracy of structural pseudo-labels also experiences a cor-
responding increase.

3.5 Training Procedure of GlocalMatch

At last, we present how we exploit the glocal cluster struc-
ture via the GCC objective and the GSA strategy in the
GlocalMatch framework.

We maintain two memory buffers to store the projected
embeddings of all labeled and unlabeled samples. In each
iteration, the memory buffers are updated with the new
embeddings from the current mini-batches. When all the
labeled samples have been processed, we update the class
prototypes. And once all the unlabeled samples have been

processed, we perform K-Means clustering and attach se-
mantic class labels to the updated centroids through cen-
troid matching. We employ the following unified loss for
the concurrent learning of both representation and classifi-
cation:

L = Ls + λcLc + λuLu, (17)

where λc and λu are the balancing factors controlling
the trade-off for each loss part. Across different tasks, we
empirically find that setting λc = λu = 1 is a simple
yet effective choice. The detailed training procedure in
each iteration is presented in Algorithm 1, where we de-
fine some functions to stand for multiple equations (e.g. ,
aggregate semantics(· · · )), please refer to the correspond-
ing comments in the code lines.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Datasets
We have developed three evaluation benchmarks for open-
domain SSL with public multi-domain datasets of different
scales, namely CIFAR-STL [71], PACS [72], and DomainNet
[73]. CIFAR-STL is created by combining low-resolution
(original 32× 32 pixels) images from CIFAR-10 [19] (i.e., the
CIFAR domain) with high-resolution images (original 96×96
pixels) from STL-10 [20] (i.e., the STL domain). It comprises 9
classes of animals and vehicles that are shared between the
two domains. PACS consists of 7 classes of images from 4
domains: Art Painting, Cartoon, Photo, and Sketch. DomainNet
is a more complex and challenging datasets, which contains
images of 345 classes from 6 domains: Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch. In the experiments, we
resize all the images to a fixed size of 96 × 96 pixels. Some
exampling images are presented in Fig. 5.

4.1.2 Evaluation Protocol
In order to comprehensively evaluate the performance of
various methods under the open-domain SSL setting, we
consider the classification accuracy across multiple testing
sets.

Firstly, we consider the in-domain testing set, where
the testing samples are collected from the same domain
as the labeled data. The in-domain accuracy assesses the
capacity of methods to leverage open-domain unlabeled
data for enhancing classification within the original do-
main. Furthermore, we construct the out-of-domain testing
set, comprising testing samples from the domain(s) different
from the labeled data. The out-of-domain accuracy measures
the models’ ability generalize to the domain(s) lacking any
annotations. Besides, we also report the overall accuracy on a
testing set containing all the aforementioned in-domain and
out-of-domain samples.

Using the uniform evaluation protocol, we compare our
proposed GlocalMatch with the latest state-of-the-art base-
line methods of standard SSL, including FixMatch [2], Flex-
Match [28], AdaMatch [56], FreeMatch [29], and SoftMatch
[21]. We additionally compare GlocalMatch with existing
solutions for SSL involving feature distribution mismatch,
specifically CAFA [43] and BDA [44].
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Algorithm 1 Training Procedure of GlocalMatch in Each Iteration

Input: {(xi, yi)}Bl
i=1 and {ui}Bu

i=1: Labeled and unlabeled samples. Tw(·) and Ts(·): Weak and strong augmentation. F(·):
Base encoder. G(·): Projection head. ϕ(·): Classifier. τ : Confidence threshold. λc, λu: Weights of losses. Z l, Zw, Zs:
Embeddings of all labeled and unlabeled samples. ni: Index number of current iteration.

1: if ⌈Nl/Bl⌉ | ni then
2: P = update class prototypes(Z l) ▷ Once all the labeled samples processed, update the class prototypes (Eq. 5).
3: end if
4: if ⌈Nu/Bu⌉ | ni then
5: C,A = k means(Zw) ▷ Once all the unlabeled samples processed, perform K-Means clustering (Eq. 2).
6: Q∗ = centroid matching(C,P) ▷ And solve the centroid matching (Eq. 12-13).
7: end if
8: h = F(Tw(x)), hw = F(Tw(u)), hs = F(Ts(x)) ▷ Obtain the features of the labeled and unlabeled samples.
9: z = G(h), zw = G(hw), zs = G(hs) ▷ Map the features into the projection space.

10: p = ϕ(h), pw = ϕ(hw), ps = ϕ(hs) ▷ The classifier produces semantic predictions.
11: Ŵ = get glocal target(C,A,P,pw) ▷ Obtain the glocal target matrix for the GCC optimization (Eq. 6-9)
12: p̂ = aggregate semantics(C,P,Q∗,pw) ▷ Refine the pseudo-labels via the GSA strategy (Eq. 14-15)
13: Ls(X ) = 1

B

∑B
i=1 H(yi,pi) ▷ Calculate the supervised loss.

14: Lc(U) = 1
Bu

∑Bu

i=1 H(Ŵi, q
s
i ) ▷ Calculate the compactness loss.

15: Lu(U) = 1
Bu

∑Bu

i=1 1(maxc(p̂i,c) > τ) · H(p̂i,p
s
i ) ▷ Calculate the unlabeled pseudo-labeling loss.

Output: The overall loss L = Ls + λcLc + λuLu to update the network parameters.

CIFAR STL

CIFAR-STL

Art Cartoon Photo Sketch

PACS

Clipart Painting Real Sketch

DomainNet
Fig. 5. Examples of open-domain samples from our benchmarks.

4.1.3 Implementation Details

For GlocalMatch, we adopt the WRN-37-2 [74] as the base
encoder network, and a MLP with one hidden layer as
the projection head. Following the standard setup of main-
stream SSL methods [2], the network is optimized using a
standard SGD optimizer with the momentum of 0.9 and
weight decay of 5 × 10−4. We adopt an initial learning
rate of 0.03 with a cosine learning rate delay scheduler as
lr = 0.03 cos(7πni/16Ni), where ni is the index number
of current iteration and Nit is the number of total training
iterations. We set λc = λu = 1, Bl = Bu = 64, α = 0.9,
η = 0.9, T = 0.2 and Ni = 204800 across different tasks. A
critical hyperparameters is the number of K-Means clusters
K . We adopt a unified criterion by setting K = 100L,
where L represents the total number of classes in the current
task. The value of confidence threshold varies slightly across
different datasets: For the CIFAR-STL and PACS bench-
marks, we adopt a higher threshold, τ = 0.95, to filter
out unreliable pseudo-labels. However, for the DomainNet
benchmark, we should use τ = 0.75 to fully utilize open-
domain unlabeled samples, as the dataset is so complex
and challenging that the average confidence is much lower.
We employ the Faiss [75] and NetworkX libraries [76], for
efficient implementation of K-Means clustering and MCF

problem solving.
For the baseline methods, we employ the implemen-

tations from the USB [42] codebase, which provide opti-
mal method-specific hyperparameters. The proposed Glo-
calMatch is also implemented using the same codebase. To
ensure fair comparisons, all the methods adopt the same
backbone network. Additionally, the optimizer, learning rate
scheduler, and common hyperparameters such as Bl, Bu,
and Nit are all consistently configured.

4.2 Main Results
4.2.1 CIFAR-STL
First, we provide an overview of the benchmark created
using the CIFAR-STL dataset. We construct the training set
using the original training images of CIFAR-10 and STL-10.
Specifically, we randomly select 500 images per shared class
from both CIFAR-10 and STL-10 datasets. As a result, the
training set comprises a total of 9, 000 images. Subsequently,
we randomly choose 5 and 25 samples per class from
each domain to serve as labeled data, while the remaining
samples from both domains are used as unlabeled data.
Considering the labeled domain and the number of labels,
there are a total of 4 distinct training data splits. The testing
set is likewise selected at random from the original testing
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TABLE 2
Performance (including in-domain, out-of-domain, and overall accuracy, %) on the CIFAR-STL benchmark.

Number of Labels 45 (5 labels per class)

Labeled Domain CIFAR STL

Test Set In Out All In Out All

FixMatch [2] NeurIPS’20 52.14 ± 8.96 14.55 ± 4.83 33.34 ± 6.87 53.83 ± 6.40 11.11 ± 0.00 35.01 ± 5.83
FlexMatch [28] NeurIPS’21 46.48 ± 1.88 11.11 ± 0.01 28.79 ± 0.93 55.49 ± 3.33 17.23 ± 3.74 36.36 ± 2.57
AdaMatch [56] ICLR’22 58.83 ± 2.58 11.12 ± 0.01 34.98 ± 1.29 61.68 ± 4.79 11.14 ± 0.02 36.41 ± 2.39
FreeMatch [29] ICLR’23 50.15 ± 1.11 11.80 ± 1.00 30.98 ± 0.73 55.21 ± 4.51 17.25 ± 5.53 36.23 ± 3.49
SoftMatch [21] ICLR’23 60.64 ± 0.95 11.10 ± 0.04 35.87 ± 0.49 66.48 ± 1.90 11.10 ± 0.00 38.79 ± 0.95

CAFA [43] NeurIPS’21 31.09 ± 1.72 18.01 ± 1.45 24.55 ± 1.54 38.86 ± 1.07 21.58 ± 1.89 30.22 ± 0.56
BDA [44] ICML’23 34.88 ± 2.32 14.58 ± 1.31 24.73 ± 1.74 41.37 ± 0.55 22.73 ± 1.24 32.05 ± 0.44

GlocalMatch Ours 61.45 ± 1.73 56.80 ± 2.24 59.13 ± 1.95 69.00 ± 1.24 53.05 ± 2.07 61.03 ± 0.82

Number of Labels 225 (25 labels per class)

Labeled Domain CIFAR STL

Test Set In Out All In Out All

FixMatch [2] NeurIPS’20 74.55 ± 1.03 14.54 ± 4.84 44.55 ± 2.45 81.10 ± 0.55 11.11 ± 0.00 46.11 ± 0.28
FlexMatch [28] NeurIPS’21 70.58 ± 0.79 13.58 ± 2.59 42.08 ± 1.49 78.18 ± 1.79 20.12 ± 1.31 49.15 ± 0.70
AdaMatch [56] ICLR’22 72.51 ± 0.33 11.15 ± 0.02 41.79 ± 0.22 81.39 ± 1.28 28.52 ± 1.94 54.97 ± 1.45
FreeMatch [29] ICLR’23 70.27 ± 0.53 14.29 ± 4.48 42.28 ± 2.34 78.99 ± 1.09 13.78 ± 1.37 46.38 ± 0.15
SoftMatch [21] ICLR’23 71.61 ± 0.29 11.30 ± 0.21 41.46 ± 0.19 81.09 ± 0.86 15.33 ± 2.94 48.21 ± 1.72

CAFA [43] NeurIPS’21 62.41 ± 0.68 21.41 ± 0.92 41.79 ± 0.79 70.39 ± 1.03 25.04 ± 0.72 47.71 ± 0.87
BDA [44] ICML’23 66.33 ± 0.53 19.44 ± 0.73 42.89 ± 0.79 72.81 ± 0.34 26.99 ± 0.62 49.90 ± 0.25

GlocalMatch Ours 77.24 ± 0.45 72.64 ± 1.19 74.94 ± 0.51 81.42 ± 0.16 66.33 ± 0.12 73.86 ± 0.14

TABLE 3
Performance (including in-domain, out-of-domain, and overall accuracy, %) on the PACS benchmark.

Number of Labels 35 (5 labels per class)

Labeled Domain Art Cartoon Photo Sketch

Test Data In Out All In Out All In Out All In Out All

FixMatch [2] 41.44 21.68 25.73 73.02 13.41 27.39 71.50 16.74 25.88 66.12 18.29 37.09
AdaMatch [56] 36.44 26.89 28.85 72.81 26.38 37.27 72.77 21.12 29.74 72.36 16.98 38.77
SoftMatch [21] 43.91 22.66 27.01 75.68 22.96 35.33 76.00 18.14 27.80 69.79 20.88 40.13

GlocalMatch 70.46 42.86 48.52 75.82 28.10 39.30 82.53 37.00 44.60 74.99 29.72 47.53

Number of Labels 105 (15 labels per class)

Labeled Domain Art Cartoon Photo Sketch

Test Data In Out All In Out All In Out All In Out All

FixMatch [2] 67.26 22.13 31.38 88.30 39.99 51.32 84.63 18.24 29.33 86.79 14.83 43.14
AdaMatch [56] 74.68 29.04 38.41 85.57 37.73 48.95 83.67 16.98 28.12 85.94 19.22 45.47
SoftMatch [21] 72.80 28.54 37.61 87.52 42.49 53.05 85.52 15.76 27.44 87.34 28.02 51.36

GlocalMatch 75.90 48.01 53.72 87.97 51.16 59.80 88.64 41.67 49.51 89.01 48.24 64.28

images of both datasets, containing 500 testing samples per
class for each domain. Each experiment is repeated three
times with different random seeds. The reported results in
Tab. 2 include both the mean accuracy (on in-domain, out-
of-domain, and all testing data) and the standard deviation.

It is evident that our proposed GlocalMatch substantially
outperforms the baseline methods across all evaluation
metrics. The results demonstrate that GlocalMatch effec-
tively mitigates the adverse effects of out-of-domain sam-
ples on classification within the original domain, leading
to a notable increase in in-domain accuracy. Furthermore,
GlocalMatch showcases remarkable performance in the un-
known domain without any annotations, as evidenced by
its impressive out-of-domain accuracy. In stark contrast,
the baseline methods are barely able to generalize to the

unknown domain. The reason for this could be attributed
to the fact that both CIFAR and STL datasets are relatively
simple with a small number of classes and limited intra-
domain variance. This makes the baseline methods prone
to overfitting the labeled domain, thereby leading to the
occurrence of severe confirmation bias. Therefore, we fur-
ther consider the more challenging benchmarks, PACS and
DomainNet, that encompass more complex domains and a
large number of classes.

4.2.2 PACS
The PACS benchmark involves 4 domains, comprising a
total of 9, 991 images belonging to 7 classes. It is notable
that the sample counts within each class of every domain are
imbalanced. Because the original dataset does not provide
training and testing splits, we randomly split the entire
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TABLE 4
Performance (including in-domain, out-of-domain, and overall accuracy, %) on the DomainNet-65 benchmark.

Number of Labels 260 (4 labels per class)

Labeled Domain Clipart Painting Real Sketch

Test Data In Out All In Out All In Out All In Out All

FixMatch [2] 50.46 23.21 30.03 14.67 8.79 10.26 17.94 5.34 8.49 23.28 6.39 10.62
AdaMatch [56] 53.44 29.26 35.31 17.03 9.85 11.64 25.54 13.40 16.44 26.56 15.62 18.36
SoftMatch [21] 48.72 28.48 33.54 16.21 8.31 10.28 26.46 12.38 15.90 32.82 23.76 26.03

GlocalMatch 57.64 31.32 37.90 26.46 15.87 19.80 40.62 24.17 28.28 33.64 24.75 26.97

dataset into training and testing sets in an approximate 9 : 1
ratio. From the training set of 8, 981 images, we randomly
choose 5 or 15 samples per class from each domain as
labeled data and use the rest as unlabeled data. Similarly,
we report the in-domain, out-of-domain, and overall perfor-
mance in Tab. 3, presented by the mean accuracy of three
random runs.

The results substantiate the robustness of GlocalMatch in
scenarios where the unlabeled data include out-of-domain
samples from multiple domains. In the PACS benchmark,
the Art domain stands out as particularly challenging due
to the high diversity of images within it. However, Glocal-
Match continues to exhibit high performance, surpassing its
strongest rival by an impressive margin of 19.67% in overall
accuracy for the 5-label-per-class task. In average of all the
4 labeled domains, GlocalMatch outperforms the previous
SOTA method by 11.34% and 14.47% in overall accuracy,
with 5 and 15 labels per class, respectively.

4.2.3 DomainNet

The full DomainNet dataset is at a large scale, demanding
significant computational resources for training. Addition-
ally, as highlighted in prior studies [71], [77], some domains
and classes in the original dataset suffer from noisy labels.
To address this, we construct a subset of DomainNet by
excluding domains and classes with noisy labels and a
limited number of samples. As a result, the DomainNet-65
benchmark used in this work comprise 65 classes from 4 do-
mains, namely Clipart, Painting, Real, and Sketch. Each class
within every domain contains 80 images for training and
15 images for testing. From the training set, we randomly
choose 4 samples as labeled data. The results are presented
in Tab. 4.

In such a complex and challenging benchmark, Glocal-
Match still excel across all the tasks. On average, it achieves
an improvement in overall accuracy of 6.80% over the pre-
vious SOTA method, which further verifies the effectiveness
and robustness of GlocalMatch.

4.2.4 Summary of Results

Finally, we provide a summary of the results obtained from
the three benchmarks. To be specific, we present the average
overall accuracy across all labeled domains within each
benchmark. The results in Tab. 5 demonstrate the significant
advantage of GlocalMatch over baseline methods in terms
of generalization performance: By labeling an extremely
limited proportion of samples from a single domain, Glo-
calMatch can effectively learn general semantic knowledge
that benefits the classification on multiple different domains.

TABLE 5
Comprehensive performance (represented by average overall

accuracy, %) across the three benchmarks.

Dataset CIFAR-STL PACS DomainNet

Labels per Class 5 25 5 15 4

FixMatch [2] 34.18 45.33 29.02 38.79 14.85
FlexMatch [28] 32.58 45.62 - - -
AdaMatch [56] 35.69 48.38 33.65 40.23 20.44
FreeMatch [29] 33.61 44.33 - - -
SoftMatch [21] 37.33 44.84 32.57 42.36 21.44

GlocalMatch 60.08 74.40 44.99 56.83 28.24

TABLE 6
Results (including in-domain and out-of-domain accuracy, %) of

ablation study on the CIFAR-STL benchmark.

Number of Labels 45 (5 labels per class)

Labeled Domain CIFAR STL

Test Data In Out In Out

FixMatch 53.49 11.11 58.66 11.11

GM w/o GCC 54.78 26.15 59.86 24.47
GM w/o GSA 59.13 32.73 62.42 30.95

GM w/o Wglobal 63.20 51.22 65.09 49.40
GM w/o CM 62.13 46.67 63.82 44.53
GM w/o proj. 61.24 53.64 65.18 52.60

GlocalMatch 63.89 59.64 68.86 55.49

4.3 Ablation Study
We verify the effectiveness of the components and corre-
sponding designs in GlocalMatch, with the experiments
conducted on the CIFAR-STL benchmark. The results are
presented in Tab. 6.

We use FixMatch as the baseline, which includes only Ls

and Lu (without refining pseudo-labels via GSA). Firstly, we
remove the GCC objective Lc from GlocalMatch (denoted
as “GM w/o GCC”) and notice a considerable drop in both
the in-domain and out-of-domain accuracy. This indicates
that the glocal compactness of clusters is critical. Next, we
disable the GSA strategy by setting α = 1 so that the orig-
inal pw’s are utilized as pseudo-labels without refinement.
This absence of GSA also leads to significant performance
degradation, particularly in terms of the out-of-domain ac-
curacy. Therefore, the efficacy of the two core components
of GlocalMatch, GCC and GSA, has been validated.

Furthermore, the results demonstrate the significance
of certain technical designs in GlocalMatch. In GCC, it is
important to take into account the global cluster information
encoded in Wglobal for generalizing to out-of-domain sam-
ples. In GSA, we solve the Centroid Matching (CM) prob-
lem to establish the association of semantics with clusters.
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Labeled CIFAR (45 labels)
Overall purity: 76.16%

Labeled CIFAR (225 labels)
Overall purity: 81.19%

Labeled STL (45 labels)
Overall purity: 74.51%

Labeled STL (225 labels)

Overall purity: 80.99%

Fig. 6. A quantitative analysis on clustering. We present the quantitative
metrics of K-Means clusters, including the number of clusters, average
size, and average purity for each class in CIFAR-STL.

Accuracy of Centroid Matching Sample-Wise Average Weights

(a) (b)

Fig. 7. Visualization of GlocalMatch training procedure on CIFAR-STL
(Labeled CIFAR, 225 labels). We present (a) the accuracy of centroid
matching algorithm, and (b) the weights of local and global same-class
centroids, to demonstrate the gradual enhancement of the glocal cluster
structure.

Adopting the trivial approach using the centroid-prototype
similarity (referred as “GM w/o CM”) will greatly under-
mine the out-of-domain performance. At last, we observe
the importance of the projection space. If we omit the
projection head and directly optimize the GCC objective in
the feature space for classification, the performance will also
be negatively impacted.

4.4 Further Analysis and Discussions

4.4.1 Analyses on Glocal Clustering

We use K-Means to explore the local cluster structure of un-
labeled open-domain samples. In spite of its simplicity, we
demonstrate that it can effectively offer valuable structural
information for semi-supervised learning. We first introduce
the concept of a “mode class” for each cluster, which refers
to the class that the majority of samples within that cluster
belong to. It can be seen as the ground-truth semantic label
for each cluster. Next, we define the “purity” of each cluster
as the ratio of samples belonging to the mode class. In Fig.
6, we show the average purity of clusters of each class. We
also present the number of clusters and average size for each
class. Even when there are extremely limited labels available
during training, the overall purity of clusters is still high,

Bird

Horse

Fig. 8. A qualitative analysis on clustering. Wrongly clustered samples
are denoted by red boxes. The visually similar backgrounds lead the
model to misidentify “Helicopter” as “Bird” and “Sheep” as “Horse”.

Fig. 9. Average overall accuracy (%) on the CIFAR-STL benchmark with
different numbers of clustering centroids. The results show that K =
100L is an appropriate choice across different benchmarks.

which validates the existence of the cluster structure from
the local perspective.

To demonstrate the existence and gradual enhancement
of the cluster structure from the global perspective, we visu-
alize the accuracy of centroid matching as Fig. 7(a) and the
sample-wise average weights of local and global same-class
centroids in the normalized glocal clustering targets Ŵ as
Fig. 7(b). For each sample, the local centroid is the centroid
of its local cluster, and the global same-class centroids are
the other centroids sharing the same class with its local
centroid. The sum of weights of global same-class centroids
indicates the global structural information correctly utilized.

In addition to the above quantitative analyses, we also
provide a qualitative analysis to reveal where glocal clus-
tering could fail. In Fig. 8, we visualize some examples
which are assigned to the wrong clusters, denoted by red
boxes. As the clustering procedure is built upon semantic
similarity, mistakes may arise from the visual similarity of
backgrounds, such as the “blue sky” and “grass ground”
in the examples. To further improve the clustering perfor-
mance, incorporating representation disentanglement tech-
niques [78]–[80] to extract more informative features could
be beneficial.

4.4.2 Number of Clustering Centroids

Experiments on the CIFAR-STL and PACS benchmarks
demonstrate that the number of clustering centroids, K , is
critical for the performance of GlocalMatch. Specifically, we
traverse the values {10L, 50L, 100L, 250L, 500L}, where L
is the number of classes. The average overall accuracy is
presented in Fig. 9.
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TABLE 7
Performance on CIFAR-STL under the standard SSL setting.

Number of Labels 45 (5 labels per class) 225 (25 labels per class)

Labeled Domain CIFAR STL CIFAR STL

Test Data In Out All In Out All In Out All In Out All

FixMatch [2] 56.24 46.22 51.23 57.75 17.46 37.61 71.78 52.60 61.19 79.80 25.04 52.42
SoftMatch [21] 63.09 50.63 56.86 67.13 20.63 43.88 74.13 58.49 66.31 82.13 28.01 55.07

GlocalMatch 61.49 51.09 56.29 69.00 25.72 47.36 76.00 60.48 68.24 81.09 33.47 57.28

TABLE 8
Performance on CIFAR-STL with all out-of-domain unlabeled samples.

Number of Labels 45 (5 labels per class) 225 (25 labels per class)

Labeled Domain CIFAR STL CIFAR STL

Test Data In Out All In Out All In Out All In Out All

AdaMatch [56] 36.24 23.90 30.07 36.38 21.44 28.91 53.47 33.71 43.59 55.38 14.66 35.02
SoftMatch [21] 31.98 21.50 26.74 38.22 20.02 29.12 52.36 39.40 45.88 53.73 18.79 35.26

GlocalMatch 48.93 58.03 53.48 46.67 46.27 46.47 61.84 67.16 64.50 66.24 60.74 63.49

TABLE 9
Performance on VisDA2017 under the setting of [44].

Methods
150 labels 300 labels

S/R R/S S/R R/S

Mean Teacher [25] 84.15 ± 1.08 73.68 ± 1.00 86.90 ± 0.61 76.90 ± 0.46
FixMatch [2] 78.46 ± 4.15 67.10 ± 9.46 82.88 ± 0.85 71.74 ± 0.45

FlexMatch [28] 83.43 ± 1.74 67.90 ± 1.77 88.09 ± 0.53 75.17 ± 1.34
UASD [12] 85.58 ± 1.55 78.49 ± 0.41 89.58 ± 0.79 81.82 ± 0.68
CAFA [43] 83.95 ± 1.79 72.89 ± 1.03 87.81 ± 0.47 76.48 ± 0.72
BDA [44] 85.92 ± 1.16 79.15 ± 0.39 89.85 ± 0.71 82.27 ± 0.60

GlocalMatch 88.17 ± 0.85 83.44 ± 0.51 93.24 ± 0.69 85.08 ± 0.43

TABLE 10
Performance on the more complex DomainNet-126 benchmark.

Number of Labels 504 (4 labels per class)

Labeled Domain Clipart Painting Real Sketch

Test Data In All In All In All In All

FixMatch [2] 42.48 20.36 12.22 6.71 21.84 10.36 22.38 10.16
AdaMatch [56] 47.59 24.68 16.17 8.29 24.90 15.20 29.65 16.75
SoftMatch [21] 45.95 23.17 15.41 12.70 25.06 14.44 28.49 17.38

GlocalMatch 51.43 26.31 23.17 15.28 39.37 22.38 33.65 19.68

In GlocalMatch, we rely on the clusters produced by
K-Means to optimize feature representations and assist
pseudo-labeling. Therefore, it is crucial to ensure that as
many samples as possible within each cluster belong to the
same class. Supported by experimental results, we found
that choosing an appropriately larger number of clusters
helps improve the purity of clusters, reducing the negative
impact of intra-domain variance. On the other hand, setting
K to be too large can also negatively impact the classifica-
tion performance, particularly when there are only a limited
number of samples for each class within a single domain.
This is because it may results in meaningless clusters con-
taining only one sample. The experimental results support
that 100L is appropriate to achieve high performance.

4.4.3 Scalability on Various Settings
Although this work mainly focuses on the open-domain SSL
problem where unlabeled data comprise samples drawn
from different domains, we would like to state that the
proposed GlocalMatch is actually a general framework to
utilize unlabeled samples collected in various scenarios.

As presented in Tab. 7, GlocalMatch can achieve compa-
rable or better in-domain performance compared with the
SOTA standard SSL method under the standard SSL setting.
Besides, GlocalMatch can generalize better to the out-of-
domain samples even if it has never seen such samples
during training, no matter labeled or unlabeled.

We also evaluate the methods in the scenario where
all the unlabeled data come from a different domain than
the labeled data, mirroring the specific case studied in [43]
and [44]. In addition to the evaluation on the CIFAR-STL
benchmark (Tab. 8), we extend our experiments to match the
setup used in [44], showing the scalability of GlocalMatch
on another large-scale benchmark, VisDA2017 [81] (Tab. 9).

For validating the scalability of GlocalMatch on more
challenging open-domain SSL tasks, we construct a con-
siderably more intricate benchmark, DomainNet-126, which
contains 137, 486 unlabeled samples of 126 classes. In addi-
tion to the massive scale of the unlabeled dataset, there is
a significant issue of severe class imbalance caused by the
long-tailed distribution, further adding to the complexity.
In spite of the high complexity, GlocalMatch continues to
showcase its effectiveness on this challenging benchmark,
as shown in Tab. 10.

4.4.4 Computation Efficiency

When compared to the simplest baseline method FixMatch,
GlocalMatch introduces extra computation primarily from
the K-Means clustering. Theoretical analysis suggests that
the average time complexity of K-Means is approximately
O(NuK). In practice, when running on a single NVIDIA
RTX 2080 Ti GPU, GlocalMatch incurs approximately 12%,
29%, and 62% additional training time compared to Fix-
Match on CIFAR-STL, PACS, and DomainNet, respectively.

The additional memory overhead comes from the mem-
ory buffers storing the projected embeddings. For a task
involving approximately Nu = 105 images and an embed-
ding dimension of d = 128, the GPU memory cost is merely
around 50 MB. This amount is significantly lower than the
initial GPU memory consumption during network training
and can be considered negligible.



13

4.4.5 Generalizability across Diverse Domains
It is meaningful to think about how different the domains
could be to remain the generalizability of GlocalMatch. In
this regard, we believe a necessary condition is that the
involved domains should share some common semantically
related visual elements, such as similar edge shapes of
objects in the same class, even in the presence of significant
visual diversity among the domains. Additionally, based on
extensive experimental results, we observe that the smaller
the differences between the domains in terms of visual
appearances, the better the performance of cross-domain
generalization. This observation aligns with existing theo-
retical analyses [82] in the literature.

4.4.6 Limitations and Future Work
Finally, we discuss the limitations of our current work and
suggest potential directions for improvement.

More Efficient Training: In the GlocalMatch framework,
we utilize the offline K-Means algorithm, which involves
clustering all samples’ embeddings. However, it might be
less adaptable for larger datasets. To address this, we could
explore incorporating online clustering methods [83], [84]
into GlocalMatch.

More Realistic Settings: In the real-world SSL applica-
tions, the class and feature distribution mismatch may exist
at the same time. Therefore, it is meaningful to consider
the open-set and open-domain problems in a unified SSL
setting. Besides, due to the inherent nature of data, real-
world applications may also encounter challenges related to
fine-grained class categories and long-tail distribution. We
will make efforts to explore more practical and challenging
scenarios in the future.

Theoretical Analyses: We will focus on conducting the-
oretical analyses of factors influencing the generalization
and applicability of semi-supervised learning algorithms in
real-world scenarios. Based on existing experimental results,
such factors may include the intra-domain feature diversity
of labeled and unlabeled data, as well as the differences
between different domains. The theoretical analyses will
assist us in constructing safe SSL algorithms [13], [85], [86],
guaranteeing they perform no worse when training on
additional out-of-domain unlabeled samples.

5 CONCLUSION

In this paper, we take the first step to systematically inves-
tigate the open-domain semi-supervised learning problem,
where the feature distribution mismatch problem exists
between labeled and unlabeled data. In order to tackle
this practical yet challenging problem, we analyze why
existing methods based on pseudo-labeling fail generaliz-
ing to out-of-domain samples. Then we propose a novel
framework, GlocalMatch, which aims to exploit both local
and glocal cluster structure of open-domain unlabeled data.
Two complementary components, namely the glocal cluster
compacting (GCC) objective and the glocal semantic aggre-
gation (GSA) strategy, are introduced for the simultaneous
learning of discriminative feature representation and reli-
able pseudo-label production. Extensive experiments have
been conducted, and the results demonstrate the significant
superiority of GlocalMatch compared with all the baseline
methods across the tasks at different scales.
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