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Abstract—Semi-supervised learning (SSL) aims to reduce the
heavy reliance of current deep models on costly manual annotation
by leveraging a large amount of unlabeled data in combination with
a much smaller set of labeled data. However, most existing SSL
methods assume that all labeled and unlabeled data are drawn
from the same feature distribution, which can be impractical in
real-world applications. In this study, we take the initial step to
systematically investigate the open-domain semi-supervised learn-
ing setting, where a feature distribution mismatch exists between
labeled and unlabeled data. In pursuit of an effective solution for
open-domain SSL, we propose a novel framework called Glocal-
Match, which aims to exploit both global and local (i.e., glocal)
cluster structure of open-domain unlabeled data. The glocal cluster
structure is utilized in two complementary ways. First, Glocal-
Match optimizes a Glocal Cluster Compacting (GCC) objective,
that encourages feature representations of the same class, whether
with in the same domain or across different domains, to become
closer to each other. Second, GlocalMatch incorporates a Glocal
Semantic Aggregation (GSA) strategy to produce more reliable
pseudo-labels by aggregating predictions from neighboring clus-
ters. Extensive experiments demonstrate that GlocalMatch out-
performs the state-of-the-art SSL methods significantly, achieving
superior performance for both in-domain and out-of-domain gen-
eralization.

Index Terms—Cluster structure, distribution mismatch, pseudo-
labeling, semi-supervised learning.

I. INTRODUCTION

S EMI-SUPERVISED Learning (SSL) [1] is one of the funda-
mental paradigms in machine learning, aimed at enhancing

model performance by incorporating unlabeled data, which are
often much easier to obtain with little human labor. Given only
a small fraction of labeled data, advanced deep SSL meth-
ods have exhibited outstanding results in various vision tasks,
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including image classification [2], object detection [3], and
semantic segmentation [4]. SSL has also achieved success in
other tasks involving diverse data types beyond images [5], [6],
[7], [8], [9]. Despite the successful applications of SSL, it is
important to note that most of these methods rely on the essential
prerequisite that all labeled and unlabeled samples are drawn
from the same distribution. However, in real-world tasks, it is
often challenging, even impossible, to obtain a perfectly matched
unlabeled dataset due to the sheer volume of data. Researchers
have observed that SSL methods may exhibit poor performance
when faced with unlabeled data containing classes unknown in
the labeled data [10]. This situation, where there is a mismatch
in class distribution between labeled and unlabeled data, is also
referred to as Open-Set Semi-Supervised Learning [11]. To
address this challenge, various methods have been proposed to
alleviate the negative effects caused by unlabeled samples from
unknown classes [11], [12], [13], [14], [15], [16], [17], [18].

Distinguished from the prior studies, we focus on address-
ing another realistic issue of SSL with a mismatch in feature
distribution between labeled and unlabeled data. This issue is
also critical to ensure the effectiveness of SSL in real-world
applications, but has received limited investigation in existing
research. The feature distribution mismatch problem is prevalent
in practical scenarios due to the diverse domains of massive
unlabeled data, which can be collected at different times, from
various locations, and through different means. For example, the
unlabeled data might be a mixture of low-resolution and high-
resolution images, real images and synthetic images, or images
with different artistic styles. Moreover, the task becomes even
more demanding when all the labeled samples come exclusively
from one of the domains and the domain labels of the unlabeled
samples are unavailable. Inspired by the name convention of
open-set SSL, we term such a challenging and realistic setting as
Open-Domain Semi-Supervised Learning. As depicted in Fig. 1,
the distinction in various SSL settings lies in the nature of the
distribution mismatch between labeled and unlabeled data.

To demonstrate how out-of-domain samples within unlabeled
data will affect the performance of SSL, we provide a case study
using two popular datasets, CIFAR [19] and STL [20], which
consist of low-resolution and high-resolution natural images,
respectively. We compare the results obtained in the standard
SSL setting, where both labeled and unlabeled samples are from
the CIFAR dataset, with the results in the open-domain SSL
setting, where the unlabeled data includes additional samples
from the STL dataset, as shown in Fig. 2. For the classic
standard SSL method, FixMatch [2], learning with additional
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Fig. 1. Illustration of various SSL settings. (1) For standard SSL, labeled
and unlabeled data are sampled from the same distribution. (2) For open-set
SSL under class distribution mismatch, unlabeled data may contain classes
unknown in labeled data (denoted by the red boxes). (3) For open-domain SSL
under feature distribution mismatch, unlabeled data may contain samples from
different domains than labeled data, i.e., out-of-domain samples (denoted by the
blue boxes).

Fig. 2. We present the performance of models trained with different methods
under different settings. For standard SSL, the labeled and unlabeled data are all
from CIFAR. Only 1% of the samples are labeled. For open-domain SSL, the
unlabeled data contain additional samples from STL. We report the classification
accuracy on the testing sets of CIFAR and STL, respectively.

out-of-domain unlabeled samples leads to much lower in-
domain performance. More surprisingly, the model has almost
lost all its out-of-domain generalization capability. Similar phe-
nomena can be observed even in the latest state-of-the-art meth-
ods like SoftMatch [21]. The significant performance degrada-
tion arises from the pseudo-labeling mechanism, which is widely
adopted in the mainstream SSL methods. During the early stage
of training, the model will be inevitably biased towards the
labeled domain, resulting in unreliable pseudo-labels for the
out-of-domain unlabeled samples. Due to the lack of labeled
samples from the corresponding domains to provide reliable
supervision, these erroneous pseudo-labels become difficult to
correct. As a consequence, the model will suffer from severe
confirmation bias and can hardly generalize to out-of-domain
testing data.

In light of the aforementioned challenge, we endeavor to en-
hance the traditional pseudo-labeling mechanism by leveraging
the cluster structure of unlabeled data, instead of just learning
from the instance-level semantic information. Given that the
unlabeled samples are collected from different domains, the

cluster structure should be examined from both local and global
perspectives: From the local perspective, within each domain,
the samples will form small clusters with high semantic con-
sistency; From the global perspective, across different domains,
clusters with similar semantics should be relatively close to each
other. The glocal cluster structure will be harnessed to facilitate
the learning of representation and classification simultaneously.

In this work, we propose a novel open-domain SSL framework
named GlocalMatch. It exploits the glocal cluster structure
through two complementary components: the Glocal Cluster
Compacting (GCC) objective and the Glocal Semantic Ag-
gregation (GSA) strategy. To optimize the GCC objective, we
periodically perform K-Means clustering on all unlabeled data.
At a local level, samples within each cluster are optimized
to be closer to their respective centroids, while at a global
scale, clusters exhibiting similar semantics are adjusted to be
closer to one another. Simultaneously, the glocal cluster structure
is employed for enhancing pseudo-labeling through the GSA
strategy. Concretely, we assign a one-hot class label to each
cluster by establishing complete bipartite connections between
cluster centroids and class prototypes. This assignment can be
formulated as a minimum-cost flow problem. Consequently, the
pseudo-label of each sample is refined by aggregating semantic
information not only from its own cluster but also from neigh-
boring clusters. Using the glocal cluster structure as a bridge,
these two components can mutually reinforce each other during
the training process.

Extensive experiments have been conducted across various
open-domain SSL scenarios with multiple datasets, where the
proposed method, GlocalMatch, is compared with the latest
state-of-the-art SSL methods. Fig. 2 offers a quick glance at
the results, which demonstrate that GlocalMatch effectively
mitigates the adverse impacts of out-of-domain samples and
can even leverage them to achieve performance improvements.
The achievement stems from two aspects: First, the refinement
process results in high-confidence pseudo-labels, which greatly
enhances their reliability. Second, even samples with low confi-
dence can also contribute to the exploitation of the glocal cluster
structure. In summary, GlocalMatch can more accurately and
effectively leverage open-domain unlabeled data.

Our contributions are summarized as follows:
� To the best of our knowledge, we are the first to system-

atically investigate the realistic yet challenging setting of
open-domain SSL, where a feature distribution mismatch
exists between labeled and unlabeled data.

� We propose a novel open-domain SSL framework, Glo-
calMatch, which aims to exploit the cluster structure of
unlabeled data from both local and global perspectives.
The glocal cluster information is utilized for boost the
representation and classification simultaneously.

� We introduce two complementary components: the glocal
cluster compacting objective for representation and the glo-
cal semantic aggregation strategy for classification. Taking
the glocal cluster structure as a bridge, they can enhance
each other during training.

The rest of this article is organized as follows. We discuss
previous research relevant to the open-domain SSL problem
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in Section II. In Section III, we begin by introducing the pre-
liminaries and the overall framework of GlocalMatch, and then
explore the specific technical aspects. Our experimental results,
along with the related analysis and discussions, are covered in
Section IV, and we conclude in Section V.

II. RELATED WORK

A. Realistic Semi-Supervised Learning

In the era of deep learning, semi-supervised learning has
garnered significant attention due to the imperative for extensive
training data. In the context of deep SSL, consistency regu-
larization [22] and pseudo-labeling [23] are two mainstream
techniques that have been widely employed in prior studies [24],
[25], [26], [27]. Among more recent works, FixMatch [2] stands
out as one of the most influential SSL methods, known for its
simplicity and effectiveness. It enhances consistency regular-
ization through a stronger form of data augmentation and incor-
porates confidence-based pseudo-labeling. FlexMatch [28] and
FreeMatch [29] adjust the class-specific confidence thresholds
based on varying learning difficulties. SoftMatch [21] proposes
weighting unlabeled samples based on their confidence to ad-
dress the quantity-quality trade-off problem of pseudo-labeling.
Drawing inspiration from the advancements in contrastive learn-
ing [30], [31], [32], some methods leverage instance-level fea-
ture similarity in auxiliary learning objectives [33], [34], [35],
[36]. There are also graph-based methods achieving high per-
formance on structured data [37], [38], [39]. For more compre-
hensive reviews on SSL theories and methods, we refer readers
to [40], [41], [42].

While numerous positive results have been achieved, most
existing SSL methods rely on the condition that labeled and
unlabeled data share the exact same distribution. In realistic
scenarios, however, a distribution mismatch between labeled
and unlabeled data is common, which can lead to serious
performance degradation in SSL methods [10]. The class dis-
tribution mismatch arises from discrepancies in label spaces,
where the unlabeled data may contain new classes unknown
in the labeled data. This setting, known as open-set SSL, has
attracted growing attention. Researchers have put forth various
strategies to alleviate the negative effects of such outliers from
unknown classes. Certain open-set SSL methods employ an
intuitive detect-and-exclude strategy, aiming to identify outliers
and subsequently remove them from consideration [11], [12],
[15]. On the other hand, alternative approaches recognize the
potential value of outliers and utilize them in diverse ways [14],
[16], [17], [18].

The feature distribution mismatch occurs when the unlabeled
data may contain out-of-domain samples, which we refer to
as open-domain SSL. This problem is also crucial for ensur-
ing the performance of SSL methods in real-world tasks, but
has not yet been thoroughly studied. Existing works, Huang
et al. [43] and Jia et al. [44], explore a simplified scenario
in which all unlabeled data are drawn from a single different
domain. Proposed for such a setting, CAFA [43] and BDA [44]
aim to align the distribution of unlabeled data to that of la-
beled data. Specifically, CAFA [43] achieves feature alignment

TABLE I
COMPARISON OF OPEN-DOMAIN SSL AND EXISTING RELATED SETTINGS

through adversarial training and BDA [44] designs a weighted
pseudo-labeling mechanism for distribution adaptation. While
CAFA [43] and BDA [44] perform well when dealing with a
single different domain in unlabeled data, their applicability
diminishes in the more realistic open-domain SSL setting, as the
absence of ground-truth domain labels and the amalgamation of
multiple unknown domains will significantly compromise the
effectiveness of distribution adaptation.

B. Learning With Data From Different Domains

In open-domain SSL, models are expected to exploit unla-
beled data from different domains. A learning problem related
to it is Unsupervised Domain Adaptation (UDA) [45], where
models are trained with a set of labeled “source” samples and
a set of unlabeled “target” samples to enable generalization in
the “target” domain. Motivated by seminal UDA theories [46],
[47], [48], existing studies pursue diverse methods to reduce the
domain discrepancy. A mainstream branch of works [49], [50],
[51] proposes explicitly minimizing various discrepancy met-
rics, such as maximum mean discrepancy (MMD) [52] and its
variants. Another branch of works [53], [54], [55] leverages the
adversarial training paradigm to learn domain-invariant feature
representations. Additionally, some researchers have observed
that SSL and UDA share a common learning paradigm with
different configurations of labeled and unlabeled data [56].
Taking this aspect into consideration, a unified approach called
AdaMatch [56] has been proposed, aiming to encompass both
standard SSL and UDA tasks.

Although UDA and open-domain SSL both involve learning
from unlabeled samples and dealing with domain shifts, there
are fundamental differences between the two settings. First, in
UDA, we have access to the domain information, which means
that we know all the labeled samples are drawn from the source
domain and all the unlabeled samples are from the target domain.
However, in open-domain SSL, the domain information is absent
as we cannot identify the domain label of each unlabeled sample
during training. Second, UDA typically assumes the availabil-
ity of plentiful labeled source data, whereas in open-domain
SSL, the number of labeled samples is quite limited. Therefore,
despite achieving high performance on standard UDA tasks,
the strong UDA methods cannot be directly applied to the
open-domain SSL setting due to the challenges posed by the
scarcity of labeled data and the absence of domain information.

In Table I, we summarize the distinctions between our pro-
posed open-domain SSL setting and existing ones across three
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dimensions: 1) “Limited Labels”: Whether only a limited num-
ber of labeled samples are available during training; 2) “Domain
Shift”: Whether there is a feature distribution mismatch (or
domain shift) between labeled and unlabeled data; 3) “Unknown
Domain Information”: Whether it is unknown from which do-
main each unlabeled sample comes. Each of these dimensions
loosens the constraints on training data, making our setting more
realistic but also more challenging.

III. METHODOLOGY

The main idea of GlocalMatch is to exploit the glocal cluster
structure of open-domain unlabeled data from both local and
global perspectives. In this section, we will delve into the depth
of the proposed framework.

In Section III-A, we begin by providing a formal definition
of open-domain semi-supervised learning and presenting an
overview of GlocalMatch. Then, in Section III-B, we elaborate
on the assumption of glocal cluster structure, which is the core
motivation of GlocalMatch. Moving on to Section III-C, we
introduce the glocal cluster compacting objective for optimizing
the feature representations. Next, in Section III-D, we provide
details on how the glocal cluster structure aids in refining
pseudo-labels through glocal semantic aggregation. Finally, in
Section III-E, we discuss the overall training procedure of Glo-
calMatch.

A. Preliminaries and Overview

We define an open-domain semi-supervised learning task,
where the training set consists of N l labeled samples and Nu

unlabeled samples. As in standard SSL, we assume that N l �
Nu. For training, we use mini-batches comprising labeled and
unlabeled data. Let X = {(xi, yi) : i ∈ (1, . . . , Bl)} represent
a batch of Bl labeled samples, where xi is a training sample
and yi is the corresponding label. Additionally, let U = {ui :
i ∈ (1, . . . , Bu)} represent a batch of Bu unlabeled samples.
The labeled samples X and a portion of the unlabeled samples
U in are drawn from the same domain, and we refer to U in as
in-domain samples. Conversely, the remaining portion of the
unlabeled samples Uout are drawn from different domain(s) and
are referred to as out-of-domain samples. Technically, we have
U in ∪ Uout = U and U in ∩ Uout = ∅. Moreover, the domain
information is unavailable during training, which means that we
do not know whether an unlabeled sample ui belongs to U in

or Uout. It is assumed that all involved domains share the same
label space, and the total number of classes is L.

Given a labeled batchX , we apply a random weak transforma-
tion function Tw(·) to obtain the weakly augmented samples. A
base encoder networkF(·) is employed to extract the feature rep-
resentations from these samples, i.e., hl

i = F(Tw(xi)) ∈ RD.
A fully-connected classifier φ(·) maps the feature hl

i into the
semantic label prediction, i.e.,pl

i = φ(hl
i). The labeled batch are

used to optimize the networks with the standard cross-entropy
loss H(·):

Ls(X ) =
1

Bl

Bl∑
i=1

H(yi,p
l
i). (1)

Fig. 3. We offer an intuitive illustration of the core ideas within in our proposed
GlocalMatch framework. Through the Glocal Cluster Compacting (GCC) objec-
tive, we enhance the compactness of feature representations associated with each
class. For the Glocal Semantic Aggregation (GSA) strategy, we take into account
the semantics of centroids and the similarity between samples and centroids
(represented by qw) to produce glocal structural pseudo-labels (denoted as p̂).

Additionally, we adopt a non-linear projection head G(·)
to obtain the normalized low-dimensional embedding zl

i =
G(hl

i)/‖G(hl
i)‖ ∈ Rd. For an unlabeled batch U , we apply both

the weak and strong augmentation with Tw(·) and Ts(·). The
same operations as above are performed to obtain hw

i and
zw
i for the weakly augmented samples Tw(ui); hs

i and zs
i

for the strongly augmented samples Ts(ui). For the weakly
augmented images, the semantic label predictions are obtained
by pw

i = DA(φ(hw
i )), where DA(·) stands for the distribution

alignment strategy as in [58] to balance the distribution of the
model’s predictions and thus prevent them from collapsing to
certain classes. For the strongly augmented images,ps

i = φ(hs
i ).

GlocalMatch exploits the glocal cluster structure of open-
domain unlabeled data with two components. We illustrate
the core ideas in Fig. 3. First, it optimizes the glocal cluster
compacting (GCC) objective, encouraging samples of the same
class to become closer in the feature space, even if they are
from different domains. Second, the novel glocal semantic ag-
gregation (GSA) strategy is introduced to produce more reliable
pseudo-labels, alleviating confirmation bias. The two compo-
nents, for representation and classification, are simultaneously
optimized in GlocalMatch. They can progressively enhance each
other, facilitated by the glocal cluster structure acting as a bridge.

B. Assumption on Glocal Cluster Structure

Before delving into the technical details, we first elaborate
on the glocal cluster assumption, which serves as the core
motivation behind GlocalMatch.

The cluster assumption in SSL states that data points be-
longing to the same cluster should be of the same class [1].
As highlighted in [40], this assumption can be considered as a
necessary condition for SSL: if the data points (both labeled and
unlabeled) cannot be meaningfully clustered, it is impossible
for an SSL method to improve on a supervised learning method.
For the standard SSL setting, where all labeled and unlabeled
samples are drawn from the same domain, the cluster assump-
tion has been implicitly or explicitly relied upon in deep SSL
methods [59], [60], [61]. For a model trained on a single domain
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while dealing with data from multiple unknown domains, it has
been observed that samples of different domains are tend to form
domain-specific intrinsic structures [62], [63], [64]. Within each
intrinsic structure, the cluster assumption still holds [64]. This
observation inspires us to examine the overall cluster structure
of open-domain samples from the local perspective.

However, the local cluster structure alone is insufficient to
train an SSL model that generalizes well across different do-
mains. From the global perspective, it is expected that clusters
of the same class from different domains should be aligned close
to each other. This global cluster structure is not evident and is
easily disrupted when the model is not well-trained. The case
study in Fig. 2 demonstrates that the unreliable pseudo-labeling
mechanism can severely disrupt the cluster structure of unknown
domains, resulting in a significant loss of out-of-domain gener-
alizability.

In GlocalMatch, we design GCC and GSA to effectively
utilize the glocal cluster structure while preventing its dis-
ruption. Specially, the optimization of GCC objective aligns
both samples with each local clusters and clusters exhibiting
similar semantics to be closer to each other. The GSA strategy
prevents unreliable pseudo-labels from disrupting the glocal
cluster structure. At the same time, as the model’s generalization
capability improves on open-domain data, the glocal cluster
structure becomes increasingly prominent.

C. Glocal Cluster Compacting for Representation

Broadly, the glocal cluster compacting (GCC) objective is
aimed to enhance the intra-class compactness of feature repre-
sentations, thereby rendering the feature space more discrimina-
tive. Considering that the unlabeled data can encompass samples
from multiple distinct domains, the optimization of the GCC
objective takes into account both local and global perspectives.

1) Compacting From Local Perspective: During training, we
periodically perform K-Means clustering on all the unlabeled
samples with the projected embeddings {zw

i }Nu
i=1 of their weakly

augmented views. The samples are clustered into K clusters
represented by their centroids C = [c1; · · · ; cK ] ∈ RK×d. The
clustering assignment matrix is formulated asA ∈ {0, 1}Nu×K :

Ai,j =

{
1 if ui is assigned to cj ;
0 otherwise.

(2)

It is obvious that
∑

j Ai,j = 1 for each i. Besides, we denote the
submatrix with respect to the unlabeled samples within a mini-
batch asA′ ∈ {0, 1}Bu×K . Using the cosine similarity function,
which is defined as sim(a, b) = a�b/‖a‖‖b‖, the probability
distribution that the i-th weakly and strongly augmented sample
is assigned to each cluster can be estimated as qw

i and qs
i , in

which

q
w/s
i,j =

exp
(

sim(z
w/s
i , cj)/T

)
∑K

j′=1 exp
(

sim(z
w/s
i , cj′)/T

) , (3)

where T is the temperature parameter controlling the concen-
tration degree.

By combining the prototypical contrastive loss [65] with the
weak-to-strong consistency technique, the GCC loss for a mini-
batch of unlabeled data can be expressed as

Lc(U) =
1

Bu

Bu∑
i=1

H(Ŵi, q
s
i ), (4)

where Ŵ ∈ RBu×K is the target assignment matrix. Specifi-
cally, Ŵ should encode the glocal cluster structure information,
which represents the optimal similarity of each sample to all the
centroids. Therefore, Ŵ should adhere to the constraints that
Ŵi,j ≥ 0 and

∑
j Ŵi,j = 1 for any i.

As with the previous works [63], [65], [66] that also exploit
the cluster structure for representation learning, we can directly
employ the K-Means clustering assignment A′ as the target Ŵ .
In this way, the loss primarily optimizes the compactness from a
local perspective, encouraging the samples to be closer to their
respective centroids. Considering such local cluster structure is
essential because samples within the same cluster often belong
to the same class. However, relying solely on the local structure
is insufficient, as clusters of the same class might be dispersed
widely when they are from different domains. Below, we present
how we also encode the global cluster structure into the target.

2) Integrating With Global Perspective: Regarding the
global cluster structure, clusters with similar semantics should
be drawn closer to other. Given that we can only process a
mini-batch of unlabeled samples per iteration, we accomplish
this indirectly by bringing samples with similar semantics to-
gether. Technically, we maintain a set of class prototypes P =
[µ1; · · · ;µL] ∈ RL×d, which is calculated with the projected
embeddings of all the labeled samples:

µc =
1

|Il
c|

∑
i∈Il

c

zl
i, (5)

where Il
c denotes the indices of labeled samples belonging to

the c-th class. Then, the similarity distribution between the j-th
centroid to the class prototypes, denoted as p̃j , is computed by

p̃j,c =
exp (sim(cj ,µc)/T )∑L

c′=1 exp (sim(cj ,µc′)/T )
. (6)

For the i-th unlabeled sample, the semantic prediction pw
i is

produced by the classifier on its weakly augmented view. We
adhere to a simple principle: if a sample is predicted to belong
to a certain class, it should be drawn closer to the centroids that
are near the prototype of that class. Therefore, we obtain the
global target matrix, denoted as Wglobal ∈ RBu×K , in which

Wglobal
i,j = Normalize(pw

i · p̃j), (7)

where

Normalize(W)i =
Wi∑
j Wi,j

. (8)

By adopting Wglobal as the target, samples exhibiting similar
semantics will be attracted toward similar centroids, bringing
them closer to each other. As clusters are formed by samples, it
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follows that clusters sharing similar semantics will naturally be
drawn closer to one another.

Integrating the local target W local = A′ ∈ {0, 1}Bu×K with
the global target Wglobal, we finally reach the glocal target
assignment matrix:

Ŵ = Normalize(W local +Wglobal). (9)

The GCC loss (4) employs the glocal target Ŵ to exploits the
glocal cluster structure for representation learning.

It is noteworthy that we perform K-Means clustering and de-
fine the loss on the projected embeddings zi’s instead of directly
on the feature representations hi’s. Such design is informed by
prior research on self-supervised representation learning [67].
This study empirically demonstrates that a non-linear projection
head substantially improves the quality of feature representa-
tions generated by the layer preceding it, which implicitly aids
classification with the more discriminative feature space. In the
following paragraphs, we explore how to explicitly enhance
pseudo-labeling by utilizing the glocal cluster structure.

D. Glocal Semantic Aggregation for Classification

The primary challenge in open-domain SSL emerges from
incorrect pseudo-labels assigned to out-of-domain unlabeled
samples, particularly in the initial training stages. Due to the
absence of labeled samples from the corresponding domains
to offer dependable supervision, rectifying these errors for the
classifier itself can be quite challenging. In response to this chal-
lenge, we design a glocal semantic aggregation (GSA) strategy,
which generates an alternative set of pseudo-labels based on the
glocal cluster structure, for complementing those predicted by
the classifier.

1) Formulation of Centroid Matching: We start by associat-
ing semantics with the unsupervised clusters. Specifically, given
that a majority of samples within each cluster belong to the
same class, the first step is to determine the corresponding class
labels for the clusters. In the projection space, the clusters are
represented by their centroids C, and the semantic information
is encoded with in the class prototypes P . The problem equals
matching each centroid to a certain prototype. Formally, our
objective is to obtain a matching matrix Q ∈ {0, 1}K×L, where

Qj,c =

{
1 if cj matches µc;
0 otherwise,

(10)

with the constraint

k∑
c′=1

Qj,c′ = 1, ∀j ∈ {1, . . . ,K}. (11)

Each matrix Q satisfying the above constraint corresponds to
a label prediction for the clusters. Additionally, we regulate
the minimum number of clusters allocated to each class to
prevent the issue of collapsing, wherein most of the clusters are
assigned to few dominant classes. The optimal matching matrix
Q∗ minimizes the total sum of pairwise distances between the

matched clusters and classes:

Q∗ = argmin
Q

K∑
j=1

L∑
c=1

Qj,c ‖cj − µc‖

s. t.

L∑
c′=1

Qj,c′ = 1,

K∑
j′=1

Qj′,c ≥ �ηK
L
, (12)

where η ∈ [0, 1] is the hyperparameter controlling the lower-
bound size of cluster sets belonging to each class.

2) Solving as Minimum Cost Flow Problem: As mentioned
in [68], the form of the constraints in the centroid matching
problem (i.e., (12)) renders it equivalent to a Minimum Cost
Flow (MCF) problem [69]. A general MCF problem is defined
upon a flow network graph G = (V,E). Each node u ∈ V is
associated with a value b(v) indicating whether it is a supply
node (b(v) > 0) or a demand node (b(v) < 0). A feasible MCF
problem requires that

∑
v∈V b(v) = 0. For each directed edge

e = (v, w) ∈ E, f(v, w) indicates the amount of flow on the
edge; c(v, w) indicates the cost for shipping one unit flow on
the edge; and u(v, w) indicates the capacity of the edge. The
MCF problem is to find the optimal flow f ∗ which satisfies all
the supplies and demands, and has the minimum total cost:

f ∗ = argmin
f

∑
(v,w)∈E

c(v, w) · f(v, w)

s. t.

0 ≤ f(v, w) ≤ u(v, w), ∀(v, w) ∈ E∑
w∈V

f(v, w)−
∑
w∈V

f(w, v) = b(v), ∀v ∈ V. (13)

In our centroid matching problem, each centroid cj corre-
sponds to a supply node with b(cj) = 1, and each class prototype
µc corresponds to a demand node with b(µc) = −�ηK/L.
Then G is a complete bipartite graph, in which there is an edge
for each (cj ,µc) pair. We define the cost on edge (cj ,µc) as
c(cj ,µc) = ‖cj − µc‖. To satisfy the constrains involving the
supplies and demands, we add an virtual demand node t with
the demand b(t) = �ηK −K. There are additional edges from
each class prototype µc to t with zero cost and no connections
between the centroids cj with t. We illustrate the flow network
graph in Fig. 4. Since b(v), ∀v ∈ V is always integer-valued, the
optimal flow f ∗ is also integer-valued, i.e., f ∗(cj ,µc) ∈ {0, 1}
for each j and c, which is proved in [68]. Therefore, the op-
timal matching Q∗ corresponds to the optimal flow f ∗, that
is Q∗

j,c = f ∗(cj ,µc). When it comes to implementation, the
MCF problem can be efficiently solved with the network simplex
algorithm [70].

3) Aggregation for Structural Pseudo-Labels: With the op-
timal matching matrix Q∗, we have assigned each cluster to a
certain class. In a straightforward manner, we can employ the
one-hot vector Q∗

j as the structural pseudo-label for each unla-
beled sample in the j-th cluster. However, such approach might
be suboptimal for samples located at the boundaries of clusters.
Considering this, we aggregate the semantic information from
all the clusters to generate the structural pseudo-label p̄i for each
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Fig. 4. Flow network graph G constructed by the centroids {cj} and the class
prototypes {µc}. f(cj ,µc) > 0 (denoted by a green arc in the figure) indicates
that the j-th cluster is assigned to the c-th class.

unlabeled sample ui:

p̄i =
1

L

L∑
j=1

qw
i,j · Q∗

i , (14)

where qw
i,j is the normalized similarity between the sample ui

and the centroid cj , which has been defined in (3).
We use p̄i to refine the original pseudo-label predicted by the

classifier:

p̂i = αpw
i + (1− α)p̄i, (15)

where α ∈ [0, 1] is the hyperparameter controlling the degree of
refinement. Integrating the glocal cluster structure, p̂i’s are more
reliable pseudo-labels for open-domain unlabeled samples:

Lu(U) =
1

Bu

Bu∑
i=1

1(max
c

(p̂i,c) > τ) · H(p̂i,p
s
i ), (16)

where τ is the threshold of confidence to filter out unreliable
pseudo-labels.

In the GSA strategy, accurately assigning the unsupervised
clusters to semantic classes is of paramount importance. To
accomplish this, we formulate the task as a constrained cen-
troid matching problem that is equivalent to the MCF problem.
Another straightforward approach involves directly utilizing
the centroid-prototype similarity distribution p̃j,c (from (6)) to
determine the class labels of clusters. However, this simplistic
approach without constraints fails to address the issue of collaps-
ing, leading to incorrect structural pseudo-labels. Furthermore,
this approach would exacerbate confirmation bias since we
employ p̃j,c to construct the global target for representation
learning.

At last, it is worth noting that the GCC objective and the GSA
strategy serve as two complementary components within the
GlocalMatch framework, working in tandem to progressively
boost one another. On one hand, the GSA strategy is utilized to
produce more reliable pseudo-labels for training the classifier,
thus providing essential semantic information to optimize the
GCC objective. On the other hand, as the glocal cluster com-
pacting is enhanced, the accuracy of structural pseudo-labels
also experiences a corresponding increase.

E. Training Procedure of GlocalMatch

At last, we present how we exploit the glocal cluster structure
via the GCC objective and the GSA strategy in the GlocalMatch
framework.

We maintain two memory buffers to store the projected em-
beddings of all labeled and unlabeled samples. In each iteration,
the memory buffers are updated with the new embeddings from
the current mini-batches. When all the labeled samples have
been processed, we update the class prototypes. And once all
the unlabeled samples have been processed, we perform K-
Means clustering and attach semantic class labels to the updated
centroids through centroid matching. We employ the following
unified loss for the concurrent learning of both representation
and classification:

L = Ls + λcLc + λuLu, (17)

where λc and λu are the balancing factors controlling the trade-
off for each loss part. Across different tasks, we empirically find
that setting λc = λu = 1 is a simple yet effective choice. The
detailed training procedure in each iteration is presented in Al-
gorithm 1, where we define some functions to stand for multiple
equations (e.g., aggregate_semantics(· · · )), please refer to the
corresponding comments in the code lines.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We have developed three evaluation bench-
marks for open-domain SSL with public multi-domain datasets
of different scales, namely CIFAR-STL [71], PACS [72], and
DomainNet [73]. CIFAR-STL is created by combining low-
resolution (original 32× 32 pixels) images from CIFAR-10 [19]
(i.e., the CIFAR domain) with high-resolution images (original
96× 96 pixels) from STL-10 [20] (i.e., the STL domain). It com-
prises 9 classes of animals and vehicles that are shared between
the two domains. PACS consists of 7 classes of images from 4
domains: Art Painting, Cartoon, Photo, and Sketch. DomainNet
is a more complex and challenging datasets, which contains
images of 345 classes from 6 domains: Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch. In the experiments, we
resize all the images to a fixed size of 96× 96 pixels. Some
exampling images are presented in Fig. 5.

2) Evaluation Protocol: In order to comprehensively evalu-
ate the performance of various methods under the open-domain
SSL setting, we consider the classification accuracy across mul-
tiple testing sets.

First, we consider the in-domain testing set, where the testing
samples are collected from the same domain as the labeled data.
The in-domain accuracy assesses the capacity of methods to
leverage open-domain unlabeled data for enhancing classifica-
tion within the original domain. Furthermore, we construct the
out-of-domain testing set, comprising testing samples from the
domain(s) different from the labeled data. The out-of-domain ac-
curacy measures the models’ ability generalize to the domain(s)
lacking any annotations. Besides, we also report the overall
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Fig. 5. Examples of open-domain samples from our benchmarks.

Algorithm 1: Training Procedure of GlocalMatch in Each Iteration.

Input: {(xi, yi)}Bl
i=1 and {ui}Bu

i=1: Labeled and unlabeled samples. Tw(·) and Ts(·): Weak and strong augmentation. F(·):
Base encoder. G(·): Projection head. φ(·): Classifier. τ : Confidence threshold. λc, λu: Weights of losses. Z l, Zw, Zs:
Embeddings of all labeled and unlabeled samples. ni: Index number of current iteration.

1: if �Nl/Bl� | ni then
2: P = update_class_prototypes(Z l) � Once all the labeled samples processed, update the class prototypes (5).
3: end if
4: if �Nu/Bu� | ni then
5: C,A = k_means(Zw) � Once all the unlabeled samples processed, perform K-Means clustering (2).
6: Q∗ = centroid_matching(C,P) � And solve the centroid matching (12-13).
7: end if
8: h = F(Tw(x)), hw = F(Tw(u)), hs = F(Ts(x)) � Obtain the features of the labeled and unlabeled samples.
9: z = G(h), zw = G(hw), zs = G(hs) � Map the features into the projection space.

10: p = φ(h), pw = φ(hw), ps = φ(hs) � The classifier produces semantic predictions.
11: Ŵ = get_glocal_target(C,A,P,pw) � Obtain the glocal target matrix for the GCC optimization (6-9)
12: p̂ = aggregate_semantics(C,P,Q∗,pw) � Refine the pseudo-labels via the GSA strategy (14-15)
13: Ls(X ) = 1

B

∑B
i=1 H(yi,pi) � Calculate the supervised loss.

14: Lc(U) = 1
Bu

∑Bu

i=1 H(Ŵi, q
s
i ) � Calculate the compactness loss.

15: Lu(U) = 1
Bu

∑Bu

i=1 1(maxc(p̂i,c) > τ) · H(p̂i,p
s
i ) � Calculate the unlabeled pseudo-labeling loss.

Output: The overall loss L = Ls + λcLc + λuLu to update the network parameters.

accuracy on a testing set containing all the aforementioned
in-domain and out-of-domain samples.

Using the uniform evaluation protocol, we compare our pro-
posed GlocalMatch with the latest state-of-the-art baseline meth-
ods of standard SSL, including FixMatch [2], FlexMatch [28],
AdaMatch [56], FreeMatch [29], and SoftMatch [21]. We addi-
tionally compare GlocalMatch with existing solutions for SSL
involving feature distribution mismatch, specifically CAFA [43]
and BDA [44].

3) Implementation Details: For GlocalMatch, we adopt the
WRN-37-2 [74] as the base encoder network, and a MLP with
one hidden layer as the projection head. Following the standard
setup of mainstream SSL methods [2], the network is optimized
using a standard SGD optimizer with the momentum of 0.9
and weight decay of 5× 10−4. We adopt an initial learning
rate of 0.03 with a cosine learning rate delay scheduler as
lr = 0.03 cos(7πni/16Ni), where ni is the index number of
current iteration and Nit is the number of total training itera-
tions. We set λc = λu = 1, Bl = Bu = 64, α = 0.9, η = 0.9,

T = 0.2 and Ni = 204800 across different tasks. A critical
hyperparameters is the number of K-Means clustersK. We adopt
a unified criterion by setting K = 100L, where L represents
the total number of classes in the current task. The value of
confidence threshold varies slightly across different datasets:
For the CIFAR-STL and PACS benchmarks, we adopt a higher
threshold, τ = 0.95, to filter out unreliable pseudo-labels. How-
ever, for the DomainNet benchmark, we should use τ = 0.75 to
fully utilize open-domain unlabeled samples, as the dataset is so
complex and challenging that the average confidence is much
lower. We employ the Faiss [75] and NetworkX libraries [76],
for efficient implementation of K-Means clustering and MCF
problem solving.

For the baseline methods, we employ the implementations
from the USB [42] codebase, which provide optimal method-
specific hyperparameters. The proposed GlocalMatch is also
implemented using the same codebase. To ensure fair compar-
isons, all the methods adopt the same backbone network. Ad-
ditionally, the optimizer, learning rate scheduler, and common
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TABLE II
PERFORMANCE (INCLUDING IN-DOMAIN, OUT-OF-DOMAIN, AND OVERALL ACCURACY, %) ON THE CIFAR-STL BENCHMARK

Bold indicates the best results, and underline indicates the second-best results.

hyperparameters such as Bl, Bu, and Nit are all consistently
configured.

B. Main Results

1) Cifar-Stl: First, we provide an overview of the benchmark
created using the CIFAR-STL dataset. We construct the training
set using the original training images of CIFAR-10 and STL-10.
Specifically, we randomly select 500 images per shared class
from both CIFAR-10 and STL-10 datasets. As a result, the
training set comprises a total of 9,000 images. Subsequently, we
randomly choose 5 and 25 samples per class from each domain
to serve as labeled data, while the remaining samples from both
domains are used as unlabeled data. Considering the labeled
domain and the number of labels, there are a total of 4 distinct
training data splits. The testing set is likewise selected at random
from the original testing images of both datasets, containing 500
testing samples per class for each domain. Each experiment is
repeated three times with different random seeds. The reported
results in Table II include both the mean accuracy (on in-domain,
out-of-domain, and all testing data) and the standard deviation.

It is evident that our proposed GlocalMatch substantially
outperforms the baseline methods across all evaluation metrics.
The results demonstrate that GlocalMatch effectively mitigates
the adverse effects of out-of-domain samples on classification
within the original domain, leading to a notable increase in
in-domain accuracy. Furthermore, GlocalMatch showcases re-
markable performance in the unknown domain without any
annotations, as evidenced by its impressive out-of-domain ac-
curacy. In stark contrast, the baseline methods are barely able
to generalize to the unknown domain. The reason for this could
be attributed to the fact that both CIFAR and STL datasets are

relatively simple with a small number of classes and limited
intra-domain variance. This makes the baseline methods prone to
overfitting the labeled domain, thereby leading to the occurrence
of severe confirmation bias. Therefore, we further consider the
more challenging benchmarks, PACS and DomainNet, that en-
compass more complex domains and a large number of classes.

2) Pacs: The PACS benchmark involves 4 domains, com-
prising a total of 9,991 images belonging to 7 classes. It is
notable that the sample counts within each class of every domain
are imbalanced. Because the original dataset does not provide
training and testing splits, we randomly split the entire dataset
into training and testing sets in an approximate 9 : 1 ratio. From
the training set of 8,981 images, we randomly choose 5 or 15
samples per class from each domain as labeled data and use
the rest as unlabeled data. Similarly, we report the in-domain,
out-of-domain, and overall performance in Table III, presented
by the mean accuracy of three random runs.

The results substantiate the robustness of GlocalMatch in sce-
narios where the unlabeled data include out-of-domain samples
from multiple domains. In the PACS benchmark, the Art domain
stands out as particularly challenging due to the high diversity
of images within it. However, GlocalMatch continues to exhibit
high performance, surpassing its strongest rival by an impressive
margin of 19.67% in overall accuracy for the 5-label-per-class
task. In average of all the 4 labeled domains, GlocalMatch
outperforms the previous SOTA method by 11.34% and 14.47%
in overall accuracy, with 5 and 15 labels per class, respectively.

3) Domainnet: The full DomainNet dataset is at a large scale,
demanding significant computational resources for training.
Additionally, as highlighted in prior studies [71], [77], some
domains and classes in the original dataset suffer from noisy
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TABLE III
PERFORMANCE (INCLUDING IN-DOMAIN, OUT-OF-DOMAIN, AND OVERALL ACCURACY, %) ON THE PACS BENCHMARK

Bold indicates the best results, and underline indicates the second-best results.

TABLE IV
PERFORMANCE (INCLUDING IN-DOMAIN, OUT-OF-DOMAIN, AND OVERALL ACCURACY, %) ON THE DOMAINNET-65 BENCHMARK

Bold indicates the best results, and underline indicates the second-best results.

labels. To address this, we construct a subset of DomainNet by
excluding domains and classes with noisy labels and a limited
number of samples. As a result, the DomainNet-65 benchmark
used in this work comprise 65 classes from 4 domains, namely
Clipart, Painting, Real, and Sketch. Each class within every
domain contains 80 images for training and 15 images for
testing. From the training set, we randomly choose 4 samples as
labeled data. The results are presented in Table IV.

In such a complex and challenging benchmark, GlocalMatch
still excel across all the tasks. On average, it achieves an im-
provement in overall accuracy of 6.80% over the previous SOTA
method, which further verifies the effectiveness and robustness
of GlocalMatch.

4) Summary of Results: Finally, we provide a summary of the
results obtained from the three benchmarks. To be specific, we
present the average overall accuracy across all labeled domains
within each benchmark. The results in Table V demonstrate the
significant advantage of GlocalMatch over baseline methods in
terms of generalization performance: By labeling an extremely
limited proportion of samples from a single domain, Glocal-
Match can effectively learn general semantic knowledge that
benefits the classification on multiple different domains.

C. Ablation Study

We verify the effectiveness of the components and cor-
responding designs in GlocalMatch, with the experiments
conducted on the CIFAR-STL benchmark. The results are pre-
sented in Table VI.

TABLE V
COMPREHENSIVE PERFORMANCE (REPRESENTED BY AVERAGE OVERALL

ACCURACY, %) ACROSS THE THREE BENCHMARKS

Bold indicates the best results, and underline indicates the second-best results.

TABLE VI
RESULTS (INCLUDING IN-DOMAIN AND OUT-OF-DOMAIN ACCURACY, %) OF

ABLATION STUDY ON THE CIFAR-STL BENCHMARK

Bold indicates the best results, and underline indicates the second-best results.

Authorized licensed use limited to: Nanjing University. Downloaded on September 09,2024 at 11:24:42 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: OPEN-DOMAIN SEMI-SUPERVISED LEARNING VIA GLOCAL CLUSTER STRUCTURE EXPLOITATION 4173

We use FixMatch as the baseline, which includes only Ls

and Lu (without refining pseudo-labels via GSA). First, we
remove the GCC objective Lc from GlocalMatch (denoted as
“GM w/o GCC”) and notice a considerable drop in both the
in-domain and out-of-domain accuracy. This indicates that the
glocal compactness of clusters is critical. Next, we disable the
GSA strategy by setting α = 1 so that the original pw’s are uti-
lized as pseudo-labels without refinement. This absence of GSA
also leads to significant performance degradation, particularly
in terms of the out-of-domain accuracy. Therefore, the efficacy
of the two core components of GlocalMatch, GCC and GSA,
has been validated.

Furthermore, the results demonstrate the significance of cer-
tain technical designs in GlocalMatch. In GCC, it is important
to take into account the global cluster information encoded in
Wglobal for generalizing to out-of-domain samples. In GSA, we
solve the Centroid Matching (CM) problem to establish the asso-
ciation of semantics with clusters. Adopting the trivial approach
using the centroid-prototype similarity (referred as “GM w/o
CM”) will greatly undermine the out-of-domain performance.
At last, we observe the importance of the projection space. If we
omit the projection head and directly optimize the GCC objective
in the feature space for classification, the performance will also
be negatively impacted.

D. Further Analysis and Discussions

1) Analyses on Glocal Clustering: We use K-Means to
explore the local cluster structure of unlabeled open-domain
samples. In spite of its simplicity, we demonstrate that it
can effectively offer valuable structural information for
semi-supervised learning. We first introduce the concept of a
“mode class” for each cluster, which refers to the class that
the majority of samples within that cluster belong to. It can be
seen as the ground-truth semantic label for each cluster. Next,
we define the “purity” of each cluster as the ratio of samples
belonging to the mode class. In Fig. 6, we show the average
purity of clusters of each class. We also present the number of
clusters and average size for each class. Even when there are
extremely limited labels available during training, the overall
purity of clusters is still high, which validates the existence of
the cluster structure from the local perspective.

To demonstrate the existence and gradual enhancement of
the cluster structure from the global perspective, we visualize
the accuracy of centroid matching as Fig. 7(a) and the sample-
wise average weights of local and global same-class centroids
in the normalized glocal clustering targets Ŵ as Fig. 7(b). For
each sample, the local centroid is the centroid of its local cluster,
and the global same-class centroids are the other centroids
sharing the same class with its local centroid. The sum of weights
of global same-class centroids indicates the global structural
information correctly utilized.

In addition to the above quantitative analyses, we also provide
a qualitative analysis to reveal where glocal clustering could
fail. In Fig. 8, we visualize some examples which are assigned
to the wrong clusters, denoted by red boxes. As the clustering
procedure is built upon semantic similarity, mistakes may arise

Fig. 6. Quantitative analysis on clustering. We present the quantitative metrics
of K-Means clusters, including the number of clusters, average size, and average
purity for each class in CIFAR-STL.

Fig. 7. Visualization of GlocalMatch training procedure on CIFAR-STL (La-
beled CIFAR, 225 labels). We present (a) the accuracy of centroid matching
algorithm, and (b) the weights of local and global same-class centroids, to
demonstrate the gradual enhancement of the glocal cluster structure.

Fig. 8. Qualitative analysis on clustering. Wrongly clustered samples are
denoted by red boxes. The visually similar backgrounds lead the model to
misidentify “Helicopter” as “Bird” and “Sheep” as “Horse.”
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TABLE VII
PERFORMANCE ON CIFAR-STL UNDER THE STANDARD SSL SETTING

Bold indicates the best results, and underline indicates the second-best results.

Fig. 9. Average overall accuracy (%) on the CIFAR-STL benchmark with
different numbers of clustering centroids. The results show that K = 100L is
an appropriate choice across different benchmarks.

from the visual similarity of backgrounds, such as the “blue
sky” and “grass ground” in the examples. To further improve the
clustering performance, incorporating representation disentan-
glement techniques [78], [79], [80] to extract more informative
features could be beneficial.

2) Number of Clustering Centroids: Experiments on the
CIFAR-STL and PACS benchmarks demonstrate that the num-
ber of clustering centroids, K, is critical for the perfor-
mance of GlocalMatch. Specifically, we traverse the values
{10L, 50L, 100L, 250L, 500L}, where L is the number of
classes. The average overall accuracy is presented in Fig. 9.

In GlocalMatch, we rely on the clusters produced by K-Means
to optimize feature representations and assist pseudo-labeling.
Therefore, it is crucial to ensure that as many samples as possible
within each cluster belong to the same class. Supported by
experimental results, we found that choosing an appropriately
larger number of clusters helps improve the purity of clusters,
reducing the negative impact of intra-domain variance. On the
other hand, setting K to be too large can also negatively impact
the classification performance, particularly when there are only a
limited number of samples for each class within a single domain.
This is because it may results in meaningless clusters containing
only one sample. The experimental results support that 100L is
appropriate to achieve high performance.

3) Scalability on Various Settings: Although this work
mainly focuses on the open-domain SSL problem where un-
labeled data comprise samples drawn from different domains,
we would like to state that the proposed GlocalMatch is actually
a general framework to utilize unlabeled samples collected in
various scenarios. As presented in Table VII, GlocalMatch can
achieve comparable or better in-domain performance compared
with the SOTA standard SSL method under the standard SSL
setting. Besides, GlocalMatch can generalize better to the out-
of-domain samples even if it has never seen such samples during
training, no matter labeled or unlabeled.

We also evaluate the methods in the scenario where all the
unlabeled data come from a different domain than the labeled
data, mirroring the specific case studied in [43] and [44]. In
addition to the evaluation on the CIFAR-STL benchmark (Table
VIII), we extend our experiments to match the setup used in [44],
showing the scalability of GlocalMatch on another large-scale
benchmark, VisDA2017 [81] (Table IX).

For validating the scalability of GlocalMatch on more chal-
lenging open-domain SSL tasks, we construct a considerably
more intricate benchmark, DomainNet-126, which contains
137,486 unlabeled samples of 126 classes. In addition to the
massive scale of the unlabeled dataset, there is a significant issue
of severe class imbalance caused by the long-tailed distribution,
further adding to the complexity. In spite of the high complexity,
GlocalMatch continues to showcase its effectiveness on this
challenging benchmark, as shown in Table X.

4) Computation Efficiency: When compared to the simplest
baseline method FixMatch, GlocalMatch introduces extra com-
putation primarily from the K-Means clustering. Theoretical
analysis suggests that the average time complexity of K-Means
is approximately O(NuK). In practice, when running on a
single NVIDIA RTX 2080 Ti GPU, GlocalMatch incurs ap-
proximately 12%, 29%, and 62% additional training time com-
pared to FixMatch on CIFAR-STL, PACS, and DomainNet,
respectively.

The additional memory overhead comes from the memory
buffers storing the projected embeddings. For a task involving
approximately Nu = 105 images and an embedding dimension
of d = 128, the GPU memory cost is merely around 50 MB.
This amount is significantly lower than the initial GPU memory
consumption during network training and can be considered
negligible.

5) Generalizability Across Diverse Domains: It is meaning-
ful to think about how different the domains could be to remain
the generalizability of GlocalMatch. In this regard, we believe
a necessary condition is that the involved domains should share
some common semantically related visual elements, such as
similar edge shapes of objects in the same class, even in the
presence of significant visual diversity among the domains. Ad-
ditionally, based on extensive experimental results, we observe
that the smaller the differences between the domains in terms of
visual appearances, the better the performance of cross-domain
generalization. This observation aligns with existing theoretical
analyses [82] in the literature.

6) Limitations and Future Work: Finally, we discuss the lim-
itations of our current work and suggest potential directions for
improvement.
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TABLE VIII
PERFORMANCE ON CIFAR-STL WITH ALL OUT-OF-DOMAIN UNLABELED SAMPLES

Bold indicates the best results, and underline indicates the second-best results.

TABLE IX
PERFORMANCE ON VISDA2017 UNDER THE SETTING OF [44]

Bold indicates the best results, and underline indicates the second-best results.

TABLE X
PERFORMANCE ON THE MORE COMPLEX DOMAINNET-126 BENCHMARK

Bold indicates the best results, and underline indicates the second-best results.

More Efficient Training: In the GlocalMatch framework, we
utilize the offline K-Means algorithm, which involves clustering
all samples’ embeddings. However, it might be less adaptable for
larger datasets. To address this, we could explore incorporating
online clustering methods [83], [84] into GlocalMatch.

More Realistic Settings: In the real-world SSL applications,
the class and feature distribution mismatch may exist at the
same time. Therefore, it is meaningful to consider the open-set
and open-domain problems in a unified SSL setting. Besides,
due to the inherent nature of data, real-world applications may
also encounter challenges related to fine-grained class categories
and long-tail distribution. We will make efforts to explore more
practical and challenging scenarios in the future.

Theoretical Analyses: We will focus on conducting theoretical
analyses of factors influencing the generalization and appli-
cability of semi-supervised learning algorithms in real-world
scenarios. Based on existing experimental results, such factors
may include the intra-domain feature diversity of labeled and
unlabeled data, as well as the differences between different
domains. The theoretical analyses will assist us in constructing
safe SSL algorithms [13], [85], [86], guaranteeing they perform

no worse when training on additional out-of-domain unlabeled
samples.

V. CONCLUSION

In this article, we take the first step to systematically in-
vestigate the open-domain semi-supervised learning problem,
where the feature distribution mismatch problem exists between
labeled and unlabeled data. In order to tackle this practical
yet challenging problem, we analyze why existing methods
based on pseudo-labeling fail generalizing to out-of-domain
samples. Then we propose a novel framework, GlocalMatch,
which aims to exploit both local and glocal cluster structure
of open-domain unlabeled data. Two complementary compo-
nents, namely the glocal cluster compacting (GCC) objective
and the glocal semantic aggregation (GSA) strategy, are intro-
duced for the simultaneous learning of discriminative feature
representation and reliable pseudo-label production. Extensive
experiments have been conducted, and the results demonstrate
the significant superiority of GlocalMatch compared with all the
baseline methods across the tasks at different scales.
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