

# Background

When open-set unlabeled data contain outliers from unseen classes, mainstream SSL methods experience significant performance drops, as it is impossible to generate correct closed-set pseudo-labels for outliers.



### Motivation

A common strategy employed in prior research is to first detect and then filter outliers out. However, it is quite challenging to obtain a reliable outlier detector at the outset, especially when labels are extremely scarce.

We observed that *an unreliable detector can be more harmful than the outliers themselves*, since it may wrongly exclude numerous inliers.





# IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint Inliers and Outliers Utilization Zekun Li, Lei Qi, Yinghuan Shi, Yang Gao

### **Core Approach of IOMatch** Can we jointly utilize open-set unlabeled data without the need for precise differentiation between inliers and outliers? We achieve this by leverage *unified open-set targets* as pseudo-labels: A standard closed-set classifier is used to predict the most likely seen class for an unlabeled sample, with the proability $p = (p_1, \dots, p_k, \dots, p_K)$ . An additional multi-binary classifier is incoporated. Each binary classifier is designed to determine whether an unlabeled sample truly belongs to each seen class or not, with the proability $o_k = (o_k, \overline{o_k})$ . By combining these two predictions, we can estimate the likelihood of an unlabeled sample being an inlier $(p_k \times o_k)$ of each seen class or an outlier $(\sum p_k \times \overline{o_k}).$ We optimize an open-set classifier with these unified targets, via the consistency-regularized pseudo-labeling scheme. Open-Set Unlabeled Data \_\_\_\_\_ ----Closed-set Classifier Multi-binary Classifier 0.7 0.2 0.1 0.8 0.1 0.1 0.4 0.6 0.1 0.9 0.2 0.8 0.9 0.1 0.2 0.8 0.1 0.9 0.28 0.02 0.02 0.68 0.72 0.02 0.01 0.25 **Open-set** Classifier

Code available in: <u>https://github.com/nukezil/IOMatch</u>



|                          | Dataset                                                                                                                                                                                               |                                                              |                                                                                                                                  |                                                                                                                                                                                                                                         |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          | Class split (Seen / Unseen)                                                                                                                                                                           |                                                              |                                                                                                                                  |                                                                                                                                                                                                                                         |  |  |  |
| -                        | Number of labels per class                                                                                                                                                                            |                                                              |                                                                                                                                  |                                                                                                                                                                                                                                         |  |  |  |
| pen-Set SSL Standard SSL | MixMatch [3]<br>ReMixMatch [2]<br>FixMatch [28]<br>CoMatch [20]<br>FlexMatch [41]<br>SimMatch [43]<br>FreeMatch [34]<br>UASD [7]<br>DS <sup>3</sup> L [10]<br>MTCF [39]<br>T2T [16]<br>OpenMatch [25] | Ne<br>I<br>Ne<br>I<br>Ne<br>C<br>I<br>I<br>E<br>I<br>I<br>Ne | eurIPS'19<br>CLR'20<br>eurIPS'20<br>CCV'21<br>eurIPS'21<br>VPR'22<br>CLR'23<br>AAI'20<br>CML'20<br>CCV'20<br>CCV'21<br>eurIPS'21 | $\begin{array}{c} 43.08 \pm 1. \\ 72.82 \pm 1. \\ 81.58 \pm 6. \\ \underline{86.08 \pm 1.} \\ 73.34 \pm 4. \\ 79.84 \pm 4. \\ 79.26 \pm 4. \\ 35.25 \pm 1. \\ 39.09 \pm 1. \\ 49.15 \pm 6. \\ 73.89 \pm 1. \\ 43.63 \pm 3. \end{array}$ |  |  |  |
| 0                        | SAFE-STUDENT [                                                                                                                                                                                        | 14] C                                                        | VPR'22                                                                                                                           | 59.28 ± 1.                                                                                                                                                                                                                              |  |  |  |
|                          | IOMatch                                                                                                                                                                                               |                                                              | Ours                                                                                                                             | <b>89.68</b> ± 2.                                                                                                                                                                                                                       |  |  |  |
|                          |                                                                                                                                                                                                       |                                                              | Clo                                                                                                                              | osed-                                                                                                                                                                                                                                   |  |  |  |
|                          | Dataset                                                                                                                                                                                               | ;                                                            |                                                                                                                                  | CI                                                                                                                                                                                                                                      |  |  |  |
|                          | Class split (Seen                                                                                                                                                                                     | n)                                                           |                                                                                                                                  |                                                                                                                                                                                                                                         |  |  |  |
|                          | Number of labels                                                                                                                                                                                      | SS                                                           | 4                                                                                                                                |                                                                                                                                                                                                                                         |  |  |  |
| <b>Open-Set SSL</b>      | UASD [7]<br>DS3L [10]<br>MTCF [39]<br>T2T [16]<br>OpenMatch [25]<br>SAFE-STUDENT [                                                                                                                    | A<br>I(<br>E<br>I(<br>Ne<br>14] C                            | AAI'20<br>CML'20<br>CCV'20<br>CCV'21<br>curIPS'21<br>VPR'22                                                                      | $17.10 \pm 0.$<br>$30.89 \pm 0.$<br>$33.35 \pm 7.$<br>$50.57 \pm 0.$<br>$14.37 \pm 0.$<br>$45.27 \pm 0.$                                                                                                                                |  |  |  |
|                          | IOMatch                                                                                                                                                                                               |                                                              | Ours                                                                                                                             | $75.08 \pm 1.$                                                                                                                                                                                                                          |  |  |  |
|                          |                                                                                                                                                                                                       | С                                                            | pen-                                                                                                                             | Set C                                                                                                                                                                                                                                   |  |  |  |
|                          | Task                                                                                                                                                                                                  | CIFAF                                                        | R-50-200                                                                                                                         | C                                                                                                                                                                                                                                       |  |  |  |
|                          |                                                                                                                                                                                                       |                                                              |                                                                                                                                  |                                                                                                                                                                                                                                         |  |  |  |
|                          | Setting C                                                                                                                                                                                             | DSSL                                                         | SSI                                                                                                                              | . 0                                                                                                                                                                                                                                     |  |  |  |
|                          | Setting C<br>FixMatch 4                                                                                                                                                                               | OSSL<br>3.94                                                 | SSI<br>45.6                                                                                                                      | 2 OS<br>4 68                                                                                                                                                                                                                            |  |  |  |
|                          | SettingOFixMatch4SimMatch4                                                                                                                                                                            | DSSL<br>3.94<br>9.98                                         | SSI<br>45.6<br>51.7                                                                                                              | 2 OS<br>4 68<br>6 69                                                                                                                                                                                                                    |  |  |  |
| (                        | SettingOFixMatch4SimMatch4OpenMatch3                                                                                                                                                                  | 0SSL<br>3.94<br>9.98<br>57.60                                | SSI<br>45.6<br>51.7<br>39.1                                                                                                      | 2 OS<br>4 68<br>6 69<br>6 66                                                                                                                                                                                                            |  |  |  |

## Conclusion

We proposed a simple yet effective open-set SSL framework, IOMatch, and we found:

- performing pseudo-labeling.



| CIFAR-10         |                              | CIFAR-100        |                  |                  |                  |                  |                              |  |
|------------------|------------------------------|------------------|------------------|------------------|------------------|------------------|------------------------------|--|
| 6/4              |                              | 20 / 80          |                  | 50 / 50          |                  | 80 / 20          |                              |  |
| 4                | 25                           | 4                | 25               | 4                | 25               | 4                | 25                           |  |
| $43.08 \pm 1.79$ | $63.13 \pm 0.64$             | $28.13 \pm 5.06$ | $51.28 \pm 1.45$ | $26.97 \pm 0.46$ | $56.93 \pm 0.84$ | $28.35 \pm 0.83$ | $53.77 \pm 0.97$             |  |
| $72.82 \pm 1.81$ | $87.08 \pm 1.12$             | $36.02 \pm 3.56$ | $61.83 \pm 0.81$ | $37.57 \pm 1.54$ | $65.80 \pm 1.33$ | $40.64 \pm 2.97$ | $62.90 \pm 1.07$             |  |
| $81.58 \pm 6.63$ | $\underline{92.94 \pm 0.80}$ | $46.27 \pm 0.64$ | $66.45 \pm 0.74$ | $48.93 \pm 5.05$ | $68.77 \pm 0.89$ | $43.06 \pm 1.21$ | $64.44 \pm 0.51$             |  |
| $86.08 \pm 1.08$ | $92.57 \pm 0.47$             | $43.53 \pm 3.01$ | $66.82 \pm 1.37$ | $43.17 \pm 0.55$ | $67.85 \pm 1.17$ | $37.89 \pm 1.22$ | $62.04 \pm 0.08$             |  |
| $73.34 \pm 4.42$ | $86.44 \pm 3.72$             | $37.93 \pm 4.49$ | $62.68 \pm 2.02$ | $44.10 \pm 1.88$ | $68.98 \pm 0.94$ | $43.44 \pm 2.40$ | $64.34 \pm 0.64$             |  |
| $79.84 \pm 4.76$ | $90.07 \pm 2.44$             | $36.93 \pm 5.72$ | $67.23 \pm 1.13$ | $51.53 \pm 2.02$ | $69.71 \pm 1.44$ | $50.32 \pm 2.57$ | $65.68 \pm 1.43$             |  |
| $79.26 \pm 4.11$ | $92.27 \pm 0.15$             | $45.18 \pm 8.36$ | $64.62 \pm 0.79$ | $50.26 \pm 1.92$ | $68.57 \pm 0.27$ | $47.34 \pm 0.57$ | $64.41 \pm 0.55$             |  |
| $35.25 \pm 1.07$ | $56.42 \pm 1.34$             | $29.78 \pm 4.28$ | $53.78 \pm 0.67$ | $29.08 \pm 1.44$ | $54.24 \pm 1.10$ | $26.41 \pm 2.16$ | $50.33 \pm 0.62$             |  |
| $39.09 \pm 1.24$ | $51.83 \pm 1.06$             | $19.70 \pm 1.98$ | $41.78 \pm 1.45$ | $21.62 \pm 0.54$ | $47.41 \pm 0.61$ | $20.10 \pm 0.48$ | $40.51 \pm 1.02$             |  |
| $49.15 \pm 6.12$ | $74.42 \pm 2.95$             | $32.58 \pm 3.36$ | $55.93 \pm 1.66$ | $35.35 \pm 2.39$ | $57.72 \pm 0.20$ | $25.40 \pm 1.20$ | $54.59 \pm 0.49$             |  |
| $73.89 \pm 1.55$ | $85.69 \pm 1.90$             | $44.23 \pm 2.27$ | $65.60 \pm 0.71$ | $39.31 \pm 1.16$ | $68.59 \pm 0.92$ | $38.16 \pm 0.59$ | $63.86 \pm 0.32$             |  |
| $43.63 \pm 3.26$ | $66.27 \pm 1.86$             | $37.45 \pm 2.67$ | $62.70 \pm 1.76$ | $33.74 \pm 0.38$ | $66.53 \pm 0.54$ | $28.54 \pm 1.15$ | $61.23 \pm 0.81$             |  |
| 59.28 ± 1.18     | $77.87 \pm 0.14$             | $34.53 \pm 0.67$ | $58.07 \pm 1.40$ | $35.84 \pm 0.86$ | $62.75 \pm 0.38$ | $34.17 \pm 0.69$ | $57.99 \pm 0.34$             |  |
| 89.68 ± 2.04     | $93.87 \pm 0.16$             | $53.73 \pm 2.12$ | $67.28 \pm 1.10$ | 56.31 ± 2.29     | $69.77 \pm 0.58$ | $50.83 \pm 0.99$ | $\underline{64.75 \pm 0.52}$ |  |

#### osed-Set Classification Accuracy (%)

| CIFAR-10         |                  | CIFAR-100                 |                  |                              |                  |                  |                  |  |
|------------------|------------------|---------------------------|------------------|------------------------------|------------------|------------------|------------------|--|
| 6/4              |                  | 20 / 80                   |                  | 50 / 50                      |                  | 80 / 20          |                  |  |
| 4                | 25               | 4                         | 25               | 4                            | 25               | 4                | 25               |  |
| $17.10 \pm 0.32$ | 36.01 ± 0.22     | $10.50 \pm 0.83$          | $26.96 \pm 0.53$ | $6.92 \pm 0.55$              | $32.23 \pm 0.54$ | 5.77 ± 0.21      | 27.61 ± 1.15     |  |
| $30.89 \pm 0.33$ | $40.45 \pm 0.77$ | $12.56 \pm 1.21$          | $34.35 \pm 0.41$ | $12.14 \pm 0.39$             | $35.17 \pm 0.48$ | $11.10 \pm 1.27$ | $29.09 \pm 0.31$ |  |
| 33.35 ± 7.21     | $46.13 \pm 0.54$ | $8.12 \pm 2.10$           | $26.60 \pm 3.66$ | $4.13 \pm 0.37$              | $38.36 \pm 0.29$ | $1.46 \pm 0.17$  | $30.75 \pm 0.52$ |  |
| $50.57 \pm 0.38$ | $61.10 \pm 0.39$ | $17.17 \pm 1.37$          | $37.18 \pm 0.60$ | $12.74 \pm 2.66$             | $44.24 \pm 0.42$ | $34.23 \pm 0.57$ | $51.41 \pm 0.96$ |  |
| $14.37 \pm 0.05$ | $20.35 \pm 3.50$ | 8.77 ± 2.84               | $39.89 \pm 1.16$ | $7.00 \pm 0.02$              | $49.75 \pm 1.08$ | $6.30 \pm 0.87$  | $44.83 \pm 0.62$ |  |
| $45.27 \pm 0.36$ | $52.78 \pm 0.64$ | $15.94 \pm 1.07$          | $28.83 \pm 0.46$ | $\underline{23.98 \pm 0.88}$ | 46.71 ± 1.74     | $29.43 \pm 0.66$ | $50.48 \pm 0.61$ |  |
| 75.08 ± 1.92     | $78.96 \pm 0.08$ | $\textbf{45.94} \pm 1.70$ | $58.52 \pm 0.48$ | $46.36 \pm 1.93$             | $60.78 \pm 0.71$ | 39.96 ± 0.95     | $54.39 \pm 0.38$ |  |

#### Set Classification Balanced Accuracy (%)

|   | CIFAR-50-1250 |              | Dataset          | CIFAR100 |       |         |       |
|---|---------------|--------------|------------------|----------|-------|---------|-------|
|   | OSSL          | SSL          | Class split      | 50 / 50  |       | 80 / 20 |       |
| 1 | 68.92         | 72.74        | Number of labels | 4        | 25    | 4       | 25    |
| 5 | 69.70         | <b>73.66</b> | IOMatch          | 56.14    | 69.84 | 49.89   | 64.28 |
| ) | 00.34         | 07.80        | w/ Contrastive   | 57.08    | 70.80 | 50.25   | 65.92 |
| 1 | 69.84         | <u>73.28</u> | w/ Rotation      | 58.92    | 71.54 | 50.90   | 66.50 |
|   |               |              |                  |          |       |         |       |

Enhanced with Self-SL Techs.

 $\succ$  It is challenging, but not mandatory, to identify outliers before

> What truly matters is the idea of joint inliers and outliers

utilization. Producing unified open-set targets is just one way, and we can explore stronger techniques for this.